A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats. 2000

A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
Department of Pathology, Wayne State University, Detroit, Michigan 48201, USA.

OBJECTIVE To examine the functional, metabolic and structural abnormalities in peripheral nerve in the spontaneously Type II (non-insulin-dependent) diabetic BBZDR/Wor rat and compare these data with those in the Type I (insulin-dependent) diabetic BB/Wor rat. METHODS Animals were examined at 6 and 14 months of diabetes. Nerve conduction velocity was measured longitudinally. Nerve polyols were analysed using gas liquid chromatography and Na/K(+)-ATPase activity was measured enzymatically. Light and electron microscopic techniques were used for nerve morphometry. RESULTS Diabetic BBZDR/Wor rats showed a slowly progressive nerve conduction defect that reached 17% (p < 0.01) at 14 months. There was a decrease in Na+/K(+)-ATPase of 35% (p < 0.05). Structurally, there were mild myelinated fibre atrophy (p < 0.05), mild or absent changes of the node of Ranvier, but significant (p < 0.001) segmental demyelination and Wallerian degeneration. These findings point to a more severe nerve conduction defect, severe myelinated fibre atrophy and profound nodal changes in Type I spontaneously diabetic BB/Wor rats maintained at the same hyperglycaemic concentrations. CONCLUSIONS We conclude that other factors, beside hyperglycaemia, are involved in the pathogenesis of the more severe Type I diabetic neuropathy which possibly involve insulin and C-peptide deficiencies.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D011913 Rats, Inbred BB A strain of Rattus norvegicus which is a model for spontaneous insulin-dependent diabetes mellitus (DIABETES MELLITUS, INSULIN-DEPENDENT). BB Wistar Rats,Bio-Breeding Inbred Rats,Rats, BB,BB Rat,BB Rat, Inbred,BB Rats,BB Rats, Inbred,Bio Breeding Inbred Rats,Bio-Breeding Inbred Rat,Inbred BB Rat,Inbred BB Rats,Inbred Rat, Bio-Breeding,Inbred Rats, Bio-Breeding,Rat, BB,Rat, Bio-Breeding Inbred,Rat, Inbred BB,Rats, BB Wistar,Rats, Bio-Breeding Inbred,Wistar Rats, BB
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus

Related Publications

A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
January 2008, European journal of pharmacology,
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
September 1989, Diabetes,
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
July 1992, The American journal of physiology,
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
August 1998, Acta neuropathologica,
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
May 1986, Journal of immunology (Baltimore, Md. : 1950),
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
November 1991, Science (New York, N.Y.),
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
December 1990, Diabetes research (Edinburgh, Scotland),
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
October 2003, Human gene therapy,
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
August 1992, Endocrinology,
A A Sima, and W Zhang, and G Xu, and K Sugimoto, and D Guberski, and M A Yorek
January 2004, ILAR journal,
Copied contents to your clipboard!