Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate. 2000

J Lännergren, and J D Bruton, and H Westerblad
Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden. jan.lannergren@fyfa.ki.se

Isolated, living muscle fibres from either Xenopus or mouse were observed in a confocal microscope and t-tubules were visualized with sulforhodamine B. Observations were made before and after fatiguing stimulation. In addition, experiments were performed on fibres observed in an ordinary light microscope with dark-field illumination. In Xenopus fibres, recovering after fatigue, t-tubules started to show dilatations 2-5 min post-fatigue. These swellings increased in size over the next 10-20 min to form vacuoles. After 2-3 h of recovery the appearance of the fibres was again normal and force production, which had been markedly depressed 10-40 min post-fatigue, was close to control. Vacuoles were not observed in mouse fibres, fatigued with the same protocol and allowed to recover. In Xenopus fibres, fatigued in normal Ringer solution and allowed to recover in Ringer solution with 30-50 mM L-lactate substituting for chloride (lactate-Ringer), the number and size of vacuoles were markedly reduced. Also, force recovery was significantly faster. Replacement of chloride by methyl sulphate or glucuronate had no effect on vacuolation. Resting Xenopus fibres exposed to 50 mM lactate-Ringer and transferred to normal Ringer solution displayed vacuoles within 5-10 min, but to a smaller extent than after fatigue. Vacuolation was not associated with marked force reduction. Mouse fibres, fatigued in 50 mM lactate-Tyrode (L-lactate substituting for chloride in Tyrode solution) and recovering in normal Tyrode solution, displayed vacuoles for a limited period post-fatigue. Vacuolation had no effect on force production. The results are consistent with the view that lactate, formed during fatigue, is transported into the t-tubules where it attracts water and causes t-tubule swelling and vacuolation. This vacuolation may be counteracted in vivo due to a gradual extracellular accumulation of lactate during fatigue.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002934 Cinnamates Derivatives of cinnamic acid (the structural formula: phenyl-HC Cinnamate
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

J Lännergren, and J D Bruton, and H Westerblad
November 1994, The Journal of physiology,
J Lännergren, and J D Bruton, and H Westerblad
September 1984, The American journal of physiology,
J Lännergren, and J D Bruton, and H Westerblad
May 1985, Acta physiologica Scandinavica,
J Lännergren, and J D Bruton, and H Westerblad
April 1988, The Journal of physiology,
J Lännergren, and J D Bruton, and H Westerblad
August 1993, The Journal of physiology,
J Lännergren, and J D Bruton, and H Westerblad
May 1979, Acta physiologica Scandinavica,
J Lännergren, and J D Bruton, and H Westerblad
May 1985, The Journal of physiology,
J Lännergren, and J D Bruton, and H Westerblad
February 1987, The Journal of physiology,
J Lännergren, and J D Bruton, and H Westerblad
June 1990, Acta physiologica Scandinavica,
J Lännergren, and J D Bruton, and H Westerblad
August 1983, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!