On the efficiency of hole and electron transfer from the hydration layer to DNA: An EPR study of crystalline DNA X-irradiated at 4 K. 2000

M G Debije, and M D Strickler, and W A Bernhard
Department of Biochemistry/Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.

The aim of this project was to gain an improved understanding of how the efficiency of hole and electron transfer from the solvation layer to DNA decreases as a function of distance from DNA. The packing of DNA in crystals of known structure makes it possible to calculate the degree of DNA hydration with a precision that is significantly greater than that achievable for amorphous samples. Previous work on oligodeoxynucleotide crystals has demonstrated that the efficiency of free radical trapping by DNA exposed to ionizing radiation at 4 K is relatively insensitive to base sequence, conformation, counterion, or base stacking continuity. Having eliminated these confounding variables, it is now possible to ascertain the degree of radical transfer that occurs from ionized water as a function of DNA hydration (Gamma, in mol water/mol nucleotide). EPR is used to measure the hydroxyl radical concentration in crystals irradiated at 4 K. From a lack of hydroxyl radicals trapped in the inner hydration mantle, we determine that hole transfer to DNA is complete for water molecules located within 8 A. This corresponds to Gamma = 9-11 and indicates that hole transfer is 100% (as efficient as direct ionization of DNA) for water molecules adjacent to DNA. Beyond approximately 8 A (Gamma > 10), hydroxyl radicals are observed; thus deprotonation of the water radical cation is seen to compete with hole transfer to DNA as soon as one water intervenes between the ionized water and DNA. The boundary for 0% hole transfer is projected to occur somewhere between 15 and 20 waters per nucleotide. Electron transfer, on the other hand, is 100% efficient across the entire range studied, 4.2 </= Gamma </= 15.6.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D017665 Hydroxyl Radical The univalent radical OH. Hydroxyl radical is a potent oxidizing agent.
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

M G Debije, and M D Strickler, and W A Bernhard
December 1999, Radiation research,
M G Debije, and M D Strickler, and W A Bernhard
August 1993, Radiation research,
M G Debije, and M D Strickler, and W A Bernhard
April 2008, The journal of physical chemistry. A,
M G Debije, and M D Strickler, and W A Bernhard
March 2001, Journal of the American Chemical Society,
M G Debije, and M D Strickler, and W A Bernhard
May 2001, Radiation research,
M G Debije, and M D Strickler, and W A Bernhard
October 1994, Radiation research,
M G Debije, and M D Strickler, and W A Bernhard
July 1998, Radiation research,
M G Debije, and M D Strickler, and W A Bernhard
January 1987, Nature,
M G Debije, and M D Strickler, and W A Bernhard
October 1989, Physical review. B, Condensed matter,
Copied contents to your clipboard!