The effects of bone marrow transplantation on X-linked hypophosphatemic mice. 2000

T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
Department of Pediatrics, Okayama University Medical School, Japan.

The genes responsible for X-linked hypophosphatemic (XLH) vitamin D-resistant rickets and the murine homolog, hypophosphatemic mice (Hyp), were identified as PHEX and Phex (phosphate-regulating gene with homology to endopeptidases on the X chromosome), respectively. However, the mechanism by which inactivating mutations of PHEX cause XLH remains unknown. We investigated the mechanisms by syngeneic bone marrow transplantation (BMT) from wild mice to Hyp mice. The expression of the Phex gene was detected in mouse BM cells. BMT introduced a chimerism in recipient Hyp mice and a significant increase in the serum phosphorus level. The renal sodium phosphate cotransporter gene expression was significantly increased. The effect of BMT on the serum phosphorus level depended on engraftment efficiencies, which represent the dosage of normal gene. Similarly, the serum alkaline phosphatase (ALP) activity was decreased and bone mineral density was increased. Furthermore, the renal expression of 25-hydroxyvitamin D3 24-hydroxylase, which is a key enzyme in the catabolic pathway and is increased in XLH/Hyp, was improved. From these results, we conclude that transplantation of normal BM cells improved abnormal bone mineral metabolism and deranged vitamin D metabolism in Hyp by replacing defective gene product(s) with normal gene product(s). This result may provide strong evidence for clinical application of BMT in metabolic bone disorders.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
May 2023, Orthopaedics & traumatology, surgery & research : OTSR,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
August 1982, Endocrinology,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
January 1989, Nephron,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
July 2000, Journal of inherited metabolic disease,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
February 1983, Metabolism: clinical and experimental,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
May 2013, The Journal of clinical endocrinology and metabolism,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
August 1986, Transplantation,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
January 1986, Endocrinology,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
June 2012, Molecular genetics and metabolism,
T Miyamura, and H Tanaka, and M Inoue, and Y Ichinose, and Y Seino
December 1991, The New England journal of medicine,
Copied contents to your clipboard!