Genomic organization and chromosome localization of the newly identified human heparanase gene. 2000

J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
Discovery Research, Tsukuba Research Institute, Novartis Pharma K.K., Okubo 8, Ibaraki 300-2611, Tsukuba, Japan.

Heparanase (HPSE), which we have recently isolated, is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate and has been implicated in inflammation and tumor angiogenesis and metastasis. In this report, the genomic organization and chromosome localization of the human heparanase gene is described. Polymerase chain reaction, subcloning and DNA sequencing analysis of a bacterial artificial chromosome (BAC) clone revealed that the 3.7 kb human heparanase cDNA is spread over about 50 kb and contains 14 exons and 13 introns. The heparanase gene is expressed as two mRNA species containing the same open reading frame, HPSE 1a (5 kb) (GenBank Data Library under accession number: AF155510); and HPSE 1b (1.7 kb) (GenBank Data Library under accession number: AF144325), generated by alternative splicing. The HPSE 1a-form contains all 14 exons, whereas in the HPSE 1b-form the first and fourteenth exons (5'- and 3'-untranslated region) have been spliced out. All splice sites conform to the GT-AG rule, except for the splice donor site of intron 13 (which is GA instead of GT), and the splice acceptor of intron 13 (which is GG instead of AG). Fluorescence in situ hybridization and radiation hybrid mapping suggest that the heparanase gene is located on human chromosome 4q22. This report regarding the structure of the human heparanase gene will aid in understanding the genetic contribution of this gene to normal physiology as well as to disease states. A possible involvement of heparanase in neuronal degeneration is discussed.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D002894 Chromosomes, Human, Pair 4 A specific pair of GROUP B CHROMOSOMES of the human chromosome classification. Chromosome 4
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase

Related Publications

J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
October 2000, Gene,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
May 2002, Gene,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
April 1997, Genomics,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
January 1994, Genomics,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
January 1995, Journal of inflammation,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
August 1998, Genome,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
June 1993, Genomics,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
December 1993, Genomics,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
December 1998, DNA research : an international journal for rapid publication of reports on genes and genomes,
J Dong, and A K Kukula, and M Toyoshima, and M Nakajima
September 1990, The Journal of biological chemistry,
Copied contents to your clipboard!