Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice. 2000

J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
Departamento de Biología Celular, de Fisiología y de Inmunología, Unidad de Fisiología Animal, Facultad de Ciencias, Universidad Autónoma de Barcelona, Bellaterra, Spain.

Metallothioneins (MTs) are major zinc binding proteins in the CNS that could be involved in the control of zinc metabolism as well as in protection against oxidative stress. Mice lacking MT-I and MT-II (MT-I + II deficient) because of targeted gene inactivation were injected with kainic acid (KA), a potent convulsive agent, to examine the neurobiological importance of these MT isoforms. At 35 mg/kg KA, MT-I + II deficient male mice showed a higher number of convulsions and a longer convulsion time than control mice. Three days later, KA-injected mice showed gliosis and neuronal injury in the hippocampus. MT-I + II deficiency decreased both astrogliosis and microgliosis and potentiated neuronal injury and apoptosis as shown by terminal deoxynucleotidyl transferase-mediated in situ end labelling (TUNEL), detection of single stranded DNA (ssDNA) and by increased interleukin-1beta-converting enzyme (ICE) and caspase-3 levels. Histochemically reactive zinc in the hippocampus was increased by KA to a greater extent in MT-I + II-deficient compared with control mice. KA-induced seizures also caused increased oxidative stress, as suggested by the malondialdehyde (MDA) and protein tyrosine nitration (NITT) levels and by the expression of MT-I + II, nuclear factor-kappaB (NF-kappaB), and Cu/Zn-superoxide dismutase (Cu/Zn-SOD). MT-I + II deficiency potentiated the oxidative stress caused by KA. Both KA and MT-I + II deficiency significantly affected the expression of MT-III, granulocyte-macrophage colony stimulating factor (GM-CSF) and its receptor (GM-CSFr). The present results indicate MT-I + II as important for neuron survival during KA-induced seizures, and suggest that both impaired zinc regulation and compromised antioxidant activity contribute to the observed neuropathology of the MT-I + II-deficient mice.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders

Related Publications

J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
February 2016, Neurological research,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
October 2007, Brain research,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
November 2004, Neurobiology of disease,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
June 2010, Mechanisms of ageing and development,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
May 2001, Brain research,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
November 2014, Neuroreport,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
October 2001, Journal of neuroimmunology,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
January 2012, Experimental neurology,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
April 2001, Brain research,
J Carrasco, and M Penkowa, and H Hadberg, and A Molinero, and J Hidalgo
July 1983, Neuropeptides,
Copied contents to your clipboard!