Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. 2000

B Blume, and T Nürnberger, and N Nass, and D Scheel
Department of Stress and Developmental Biology, Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany.

Transient influx of Ca(2+) constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae-derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca(2+)](cyt)), which peaked at approximately 1 microM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca(2+)](cyt) signature was achieved by elicitor concentrations sufficient to stimulate Ca(2+) influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca(2+)](cyt) but not the rapidly induced [Ca(2+)](cyt) transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca(2+) influx across the plasma membrane or of Ca(2+) release from internal stores suggests that the elicitor-induced sustained increase of [Ca(2+)](cyt) predominantly results from the influx of extracellular Ca(2+). Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca(2+)](cyt), and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca(2+)](cyt) is causally involved in signaling the activation of pathogen defense in parsley.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D010937 Plant Growth Regulators Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins. Phytohormone,Phytohormones,Plant Growth Regulator,Plant Hormone,Plant Hormones,Growth Regulators, Plant,Regulators, Plant Growth,Growth Regulator, Plant,Hormone, Plant,Hormones, Plant,Regulator, Plant Growth
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

B Blume, and T Nürnberger, and N Nass, and D Scheel
May 1995, Proceedings of the National Academy of Sciences of the United States of America,
B Blume, and T Nürnberger, and N Nass, and D Scheel
June 1997, Science (New York, N.Y.),
B Blume, and T Nürnberger, and N Nass, and D Scheel
October 1985, Journal of immunology (Baltimore, Md. : 1950),
B Blume, and T Nürnberger, and N Nass, and D Scheel
March 1997, Proceedings of the National Academy of Sciences of the United States of America,
B Blume, and T Nürnberger, and N Nass, and D Scheel
April 1991, Biochemical Society transactions,
B Blume, and T Nürnberger, and N Nass, and D Scheel
February 1992, Naunyn-Schmiedeberg's archives of pharmacology,
B Blume, and T Nürnberger, and N Nass, and D Scheel
July 1998, Proceedings of the National Academy of Sciences of the United States of America,
B Blume, and T Nürnberger, and N Nass, and D Scheel
October 1983, Endocrinology,
B Blume, and T Nürnberger, and N Nass, and D Scheel
June 1990, Biochemical Society transactions,
B Blume, and T Nürnberger, and N Nass, and D Scheel
January 2000, Results and problems in cell differentiation,
Copied contents to your clipboard!