Inhibition of apoptosis in the primary enamel knot does not affect specific tooth crown morphogenesis in the mouse. 2000

R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
INSERM U-424, U.F.R d'Odontologie de Strasbourg, France.

The enamel knot (EK), located in the center of cap-stage tooth germs, is a transitory cluster of non-dividing epithelial cells, eventually linked to the outer dental epithelium by the enamel septum (ES). It might act as a signaling center providing positional information for tooth morphogenesis and could regulate the growth of tooth cusps through the induction of secondary signaling EKs. The EK undergoes apoptosis, which could constitute a mechanism whereby the signaling functions of this structure are terminated. Recently, we demonstrated the segregation of 5-bromo-2'-deoxyuridine (BrdU) negative inner dental epithelial (IDE) cells of the EK into as many individual groups of cells as cusps will form and suggested a morphogenetic role for these particular IDE cells. Using Z-VAD-fmk, a specific caspase inhibitor, apoptosis in the primary EK of first mouse lower cap-staged molars and lower incisors cultured in vitro was abrogated. No obvious histological alterations were observed in the incisors, whereas a prominent EK and an ES connecting the outer dental epithelium (ODE) and the BrdU negative IDE cells capping cusp L2 were observed in the molars. EK specific transcription (Shh, Msx-2, Bmp-2, Bmp-4) was down-regulated in the body of these structures with the exception of the associated IDE cells. In these experimental conditions, segregation of non-dividing transcriptionally active IDE cells occurred and a normal cusp pattern was expressed.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009805 Odontogenesis The process of TOOTH formation. It is divided into several stages including: the dental lamina stage, the bud stage, the cap stage, and the bell stage. Odontogenesis includes the production of tooth enamel (AMELOGENESIS), dentin (DENTINOGENESIS), and dental cementum (CEMENTOGENESIS). Odontogeneses
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D003743 Dental Enamel A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286) Enamel,Enamel Cuticle,Dental Enamels,Enamel, Dental,Enamels, Dental,Cuticle, Enamel,Cuticles, Enamel,Enamel Cuticles,Enamels
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
June 2018, Histochemistry and cell biology,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
May 2014, Journal of dental research,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
November 2000, Development (Cambridge, England),
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
November 2015, Cell and tissue research,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
January 1996, Mechanisms of development,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
January 2006, Physiological research,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
December 2015, BMC evolutionary biology,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
February 2007, Differentiation; research in biological diversity,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
November 1998, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology,
R Coin, and S Kieffer, and H Lesot, and J L Vonesch, and J V Ruch
January 1998, Development (Cambridge, England),
Copied contents to your clipboard!