Effect of lysozyme or modified lysozyme fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. 2000

A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
Institute of Veterinary Physiology, Division of Applied Physiology, University of Zürich, Switzerland. pella@vetphys.unizh.ch

Previously we have shown that chicken egg white lysozyme, an efficient bactericidal agent, affects both gram-positive and gram-negative bacteria independently of its muramidase activity. More recently we reported that the digestion of lysozyme by clostripain yielded a pentadecapeptide, IVSDGNGMNAWVAWR (amino acid 98-112 of chicken egg white lysozyme), with moderate bactericidal activity but without muramidase activity. On the basis of this amino acid sequence three polypeptides, in which asparagine 106 was replaced by arginine (IVSDGNGMRAWVAWR, RAWVAWR, RWVAWR), were synthesized which showed to be strongly bactericidal. To elucidate the mechanisms of action of lysozyme and of the modified antimicrobial polypeptides Escherichia coli strain ML-35p was used. It is an ideal organism to study the outer and the inner membrane permeabilization since it is cryptic for periplasmic beta-lactamase and cytoplasmic beta-galactosidase unless the outer or inner membrane becomes damaged. For the first time we present evidence that lysozyme inhibits DNA and RNA synthesis and in contrast to the present view is able to damage the outer membrane of Escherichia coli. Blockage of macromolecular synthesis, outer membrane damage and inner membrane permeabilization bring about bacterial death. Ultrastructural studies indicate that lysozyme does not affect bacterial morphology but impairs stability of the organism. The bactericidal polypeptides derived from lysozyme block at first the synthesis of DNA and RNA which is followed by an increase of the outer membrane permeabilization causing the bacterial death. Inner membrane permeabilization, caused by RAWVAWR and RWVAWR, follows after the blockage of macromolecular synthesis and outer membrane damage, indicating that inner membrane permeabilization is not the deadly event. Escherichia coli bacteria killed by the substituted bactericidal polypeptides appeared, by electron microscopy, with a condensed cytoplasm and undulated bacterial membrane. So the action of lysozyme and its derived peptides is not identical.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
April 1985, Journal of bacteriology,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
July 1972, Proceedings of the National Academy of Sciences of the United States of America,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
October 1974, Biochimica et biophysica acta,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
April 1971, Canadian journal of microbiology,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
January 1970, Biochimica et biophysica acta,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
July 1990, Journal of bacteriology,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
January 1978, Radiobiologiia,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
July 1977, Proceedings of the National Academy of Sciences of the United States of America,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
January 1984, Molekuliarnaia biologiia,
A Pellegrini, and U Thomas, and P Wild, and E Schraner, and R von Fellenberg
July 1975, FEBS letters,
Copied contents to your clipboard!