Molecular targets of guanine nucleotides in differentiation, proliferation and apoptosis. 2000

J A Yalowitz, and H N Jayaram
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA.

Guanine nucleotides are important substrates for macromolecular synthesis, cell signaling, and integration of metabolic status, and have an evolutionarily conserved role in differentiation, proliferation, and apoptosis. Bacteria, yeast, and mammalian cells are all dependent on an adequate supply of guanylates to maintain proliferation. Depletion of intracellular guanylates, especially by inhibition of de novo synthesis via the IMP dehydrogenase pathway, is a potent signal for inhibition of proliferation, as well as apoptosis. Growth inhibition by depletion of GTP is a conserved pathway from humans to Bacillus. IMPDH expression is downregulated by the p53 tumor suppressor gene. Many inhibitors of IMP dehydrogenase are used as clinical agents. These agents are antivirals (ribavirin), antitumor (tiazofurin [TR], selenazofurin [SR], and benzamide riboside [BR]), and immunosuppressants (mycophenolic acid [MPA]). The biochemical actions of IMP dehydrogenase inhibitors are well known, but correlation with in vivo activities is difficult because the extent of exogenous contributions to the nucleotide metabolic pathways is not fully known. IMPDH inhibitors are biochemically convenient in inhibiting parallel pathways, since excess reactants IMP and 5'-phospho-ribose-1'-pyrophosphate (PRPP) inhibit guanine salvage synthesis. IMPDH activity is a progression-linked key enzyme in tumorigenesis. The antitumor potential of IMPDH inhibitors is therefore particularly high.

UI MeSH Term Description Entries
D007168 IMP Dehydrogenase An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205. Inosinic Acid Dehydrogenase,Inosine-5-Monophosphate Dehydrogenase,Acid Dehydrogenase, Inosinic,Dehydrogenase, IMP,Dehydrogenase, Inosine-5-Monophosphate,Dehydrogenase, Inosinic Acid,Inosine 5 Monophosphate Dehydrogenase
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D016158 Genes, p53 Tumor suppressor genes located on the short arm of human chromosome 17 and coding for the phosphoprotein p53. Genes, TP53,TP53 Genes,p53 Genes,Gene, TP53,Gene, p53,TP53 Gene,p53 Gene

Related Publications

J A Yalowitz, and H N Jayaram
August 2023, International journal of molecular sciences,
J A Yalowitz, and H N Jayaram
January 1981, Ukrainskii biokhimicheskii zhurnal (1978),
J A Yalowitz, and H N Jayaram
August 1995, Biochemical and molecular medicine,
J A Yalowitz, and H N Jayaram
April 1992, Journal of neurochemistry,
J A Yalowitz, and H N Jayaram
July 1996, [Rinsho ketsueki] The Japanese journal of clinical hematology,
Copied contents to your clipboard!