Importance of timing of olfactory receptor-axon outgrowth for glomerulus development in Manduca sexta. 2000

W Rössler, and L P Tolbert, and J G Hildebrand
ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA.

In the moth Manduca sexta, development of glomeruli in the antennal (olfactory) lobes (ALs) follows a precise timetable and involves interactions of olfactory receptor cell (ORC) axons with AL glial cells and neurons. To study the importance of timing for these intercellular interactions, we experimentally desynchronized the development of the ALs and the ORCs by altering the temperature of the developing antenna and brain for defined periods of time during development. Selective cooling of the antenna relative to the body resulted in a delay of ORC-axon outgrowth, and slightly warming the antenna while cooling the body caused precocious ingrowth of axons into the AL. Whereas cooling of the antenna for 24 hours caused only a delay in the formation of glomeruli, cooling for 48 hours led to significant disruption of glomerular development. Glial cells did not form normal glomerular borders, and glomeruli were shaped abnormally. Axons of pheromone-specific ORCs projected to their correct target, but terminal branches within the macroglomerular complex (MGC) were not clearly segregated. The results suggest that proper formation of glial glomerular borders requires interaction of ORC axons and glial cells within a sensitive period, whereas targeting of ORC axons appears to be effective over extended periods in development. Precocious ingrowth of ORC axons after warming the antenna and cooling the body for 48 hours resulted in enlarged protoglomeruli. Glial borders formed normally, but a subpopulation of MGC-specific ORC axons grew past the MGC. The decreased accuracy of targeting in these cases suggests that targeting mechanisms are not fully developed before the time when ORC axons normally would enter the brain.

UI MeSH Term Description Entries
D008297 Male Males
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D005260 Female Females
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D018034 Olfactory Receptor Neurons Neurons in the OLFACTORY EPITHELIUM with proteins (RECEPTORS, ODORANT) that bind, and thus detect, odorants. These neurons send their DENDRITES to the surface of the epithelium with the odorant receptors residing in the apical non-motile cilia. Their unmyelinated AXONS synapse in the OLFACTORY BULB of the BRAIN. Neurons, Olfactory Receptor,Olfactory Receptor Cells,Olfactory Receptor Neuron,Olfactory Sensory Cells,Olfactory Sensory Cilia,Olfactory Sensory Neurons,Cell, Olfactory Receptor,Cell, Olfactory Sensory,Cells, Olfactory Receptor,Cells, Olfactory Sensory,Cilia, Olfactory Sensory,Cilias, Olfactory Sensory,Neuron, Olfactory Receptor,Neuron, Olfactory Sensory,Neurons, Olfactory Sensory,Olfactory Receptor Cell,Olfactory Sensory Cell,Olfactory Sensory Cilias,Olfactory Sensory Neuron,Receptor Cell, Olfactory,Receptor Cells, Olfactory,Receptor Neuron, Olfactory,Receptor Neurons, Olfactory,Sensory Cell, Olfactory,Sensory Cells, Olfactory,Sensory Cilia, Olfactory,Sensory Cilias, Olfactory,Sensory Neuron, Olfactory,Sensory Neurons, Olfactory

Related Publications

W Rössler, and L P Tolbert, and J G Hildebrand
March 2006, Chemical senses,
W Rössler, and L P Tolbert, and J G Hildebrand
July 2000, The Journal of experimental biology,
W Rössler, and L P Tolbert, and J G Hildebrand
April 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Rössler, and L P Tolbert, and J G Hildebrand
April 2001, Journal of insect physiology,
W Rössler, and L P Tolbert, and J G Hildebrand
November 2008, Journal of neurophysiology,
W Rössler, and L P Tolbert, and J G Hildebrand
August 2004, The Journal of comparative neurology,
W Rössler, and L P Tolbert, and J G Hildebrand
July 1974, Journal of insect physiology,
W Rössler, and L P Tolbert, and J G Hildebrand
December 1994, The Journal of comparative neurology,
Copied contents to your clipboard!