H-2-linked genetic control of murine T-cell-mediated lympholysis to autologous cells modified with low concentrations of trinitrobenzene sulfonate. 1979

G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany

Spleen cells from B10.BR and C57BL/10 (B10) mice were compared for their ability to generate primary in vitro cytotoxic responses to syngeneic cells modified with different concentrations (from 10 to 0.031 mM) of trinitrobenzene sulfonate (TNBS) (TNP-self). Although both strains generated effector cells to TNP-self in the range of 10-0.25 mM TNBS modification, effector activity of B10 cells was weaker than that of B10.BR cells. B10 spleen cells did not respond to syngeneic stimulating cells modified at 0.1 mM or lower, whereas B10.BR cells generated effector activity even when stimulated by TNP-self modified with as low as 0.031 mM TNBS. Fluorescence analysis of the modified cells using the FACS II indicated that equivalent quantities of TNP were conjugated to the surfaces of B10.BR and B10 spleen cells for any given concentration of TNBS modification. Similar strain-dependent differences were observed when the TNP was diluted out in the cultures by reducing the number of stimulating cells modified with 10 mM TNBS. These response patterns were verified by stimulating cultures of B10.BR and B10 spleen cells either with TNP conjugated to bovine serum albumin or bovine gamma globulin (B10.BR but not B10 cells responded to TNP-conjugated proteins) or with TNBS-modified glass-adherent spleen cells. The strain-dependent differences could also be detected at the effector phase, because optimally stimulated B10.BR, but not B10 effector cells, could lyse 0.1 mM TNBS-modified syngeneic target cells. The genetic parameters associated with the response and nonresponse patterns of B10.BR and B10 mice were further investigated by comparing the cytotoxic responses to low doses of TNP-self of spleen cells from the following strains: (a) C3H/HeJ (H-2k) and C3H.SW (H-2b); (b) BALB.K (H-2k) and BALb.b (h-2b); and (c) B10.A (H-2a) and B10.D2 (H-2d). The H-2k and H-2a, but not the H-2b and H-2d, strains generated cytotoxic responses to TNP-self when the syngeneic stimulators were modified with 0.1 mM TNBS. Further studies using (B10 X B10.BR)F1 responding cells and parental or F1-modified stimulating cells, indicated that the F1 cells generated cytotoxic activity to low doses of TNP in association with H-2k but not in association with H-2b self products. The results of this study indicate that H-2-linked genetic factors, expressed in the target as well as in the responding and/or stimulating cell populations, control the ability of inbred mouse strains to generate cytotoxic effector cells to low doses of TNP-self. Such dose-dependent genetic effects may be important in the regulation of immune responses activated in vivo by chronic exposure to infectious agents.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens

Related Publications

G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
March 1981, Cellular immunology,
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
January 1980, Journal of immunology (Baltimore, Md. : 1950),
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
September 1982, Journal of immunology (Baltimore, Md. : 1950),
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
October 1976, The Journal of experimental medicine,
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
December 1974, The Journal of experimental medicine,
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
March 1981, Journal of immunology (Baltimore, Md. : 1950),
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
November 1981, Journal of immunology (Baltimore, Md. : 1950),
G M Shearer, and A M Schmitt-Verhulst, and C B Pettinelli, and M W Miller, and P E Gilheany
May 1973, The Journal of experimental medicine,
Copied contents to your clipboard!