Heparin-binding EGF-like growth factor: a juxtacrine growth factor. 2000

R Iwamoto, and E Mekada
Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan.

Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family growth factors, is synthesized as a membrane-anchored form (proHB-EGF). Proteolytic cleavage of proHB-EGF at the extracellular domain yields the soluble form of HB-EGF (sHB-EGF). ProHB-EGF is not only the precursor molecule for sHB-EGF but also a biologically active molecule itself. Recent studies indicate that proHB-EGF has unique properties distinct from the soluble form. ProHB-EGF forms a complex with membrane proteins including a tetramembrane spanning protein: CD9, an adhesion molecule integrin: alpha3beta1, and heparan sulfate proteoglycans. The complex is localized at the cell-cell contact site, suggesting that proHB-EGF may function in cell-to-cell signaling by a juxtacrine mechanism. In an in vitro model system, proHB-EGF showed growth inhibitory activity, while sHB-EGF was growth stimulatory. Ectodomain shedding, conversion of the membrane-anchored form into the soluble form, is regulated by multiple signaling pathways. All these characteristics imply that proHB-EGF and sHB-EGF are used in different ways. In vivo functions of sHB-EGF and proHB-EGF have been largely undefined, but recent studies implicate them in a variety of physiological processes including blastocyst implantation and wound healing.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010064 Embryo Implantation Endometrial implantation of EMBRYO, MAMMALIAN at the BLASTOCYST stage. Blastocyst Implantation,Decidual Cell Reaction,Implantation, Blastocyst,Nidation,Ovum Implantation,Blastocyst Implantations,Decidual Cell Reactions,Embryo Implantations,Implantation, Embryo,Implantation, Ovum,Implantations, Blastocyst,Implantations, Embryo,Implantations, Ovum,Nidations,Ovum Implantations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011498 Protein Precursors Precursors, Protein
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005260 Female Females
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R Iwamoto, and E Mekada
December 1997, Biochimica et biophysica acta,
R Iwamoto, and E Mekada
November 1999, Nihon rinsho. Japanese journal of clinical medicine,
R Iwamoto, and E Mekada
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
R Iwamoto, and E Mekada
August 2005, Seminars in pediatric surgery,
R Iwamoto, and E Mekada
December 1994, Proceedings of the National Academy of Sciences of the United States of America,
R Iwamoto, and E Mekada
March 1998, Frontiers in bioscience : a journal and virtual library,
R Iwamoto, and E Mekada
January 1999, Growth factors (Chur, Switzerland),
R Iwamoto, and E Mekada
January 2012, The Journal of surgical research,
Copied contents to your clipboard!