Presynaptic effect of 7-OH-DPAT on evoked [3H]-acetylcholine release in rat striatal synaptosomes. 2000

A G Sanz, and S Hospital, and A Badia, and M V Clos
Departament de Farmacologia i Terapèutica. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.

The objective of the present experiments was to study the presynaptic effect of 7-hydroxy-N,N-di-n-propyl-2-aminotetraline (7-OH-DPAT, a D(2)-like dopamine receptor agonist) on [3H]-acetylcholine ([3H]-ACh) release induced by potassium (15 mM, 25 mM and 60 mM), potassium channel-blockers (4-aminopyridine, 4-AP; tetraethylammonium, TEA and quinine) and veratridine to gain insight into the mechanisms involved in the activation of the D(2) dopamine-receptor subtype located at striatal cholinergic nerve terminals. 7-OH-DPAT (1 microM) inhibited the evoked [3H]-ACh release induced by K(+) 15 mM in a similar percentage than that obtained during basal conditions (30% and 27%, respectively). Nevertheless, in the presence of 25 mM and 60 mM of K(+) the inhibitory effect of 7-OH-DPAT was completely abolished. 4-AP (1-100 microM) and TEA (1 and 5 mM) significantly enhanced [3H]-ACh release, showing 69.32%+/-7.60% (P<0.001) and 52.27%+/-5.64% (P<0.001), respectively, at the highest concentrations tested. In these conditions, 7-OH-DPAT (1 microM) inhibited the release induced by potassium channel-blockers approximately 25-27%. Quinine (0.1-1 microM) did not alter [3H]-ACh release either in the presence or absence of 7-OH-DPAT. Veratridine 10 microM evoked [3H]-ACh release in the presence of a low-calcium medium, but in such conditions 7-OH-DPAT (1 microM) did not modify the neurotransmitter release in the absence or presence of veratridine. Present data indicate that activation of the presynaptic D(2) dopamine receptor inhibits the [3H]-ACh release by increasing K(+) conductance, as high K(+) concentrations abolished the inhibitory control of 7-OH-DPAT on [3H]-ACh release. This effect could be mediated by potassium channels different from those sensitive to 4-AP, TEA and quinine. In addition, the presynaptic D(2) dopamine-receptor activation seems to not involve changes in intracellular Ca(2+).

UI MeSH Term Description Entries
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011803 Quinine An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. Biquinate,Legatrim,Myoquin,Quinamm,Quinbisan,Quinbisul,Quindan,Quinimax,Quinine Bisulfate,Quinine Hydrochloride,Quinine Lafran,Quinine Sulfate,Quinine Sulphate,Quinine-Odan,Quinoctal,Quinson,Quinsul,Strema,Surquina,Bisulfate, Quinine,Hydrochloride, Quinine,Sulfate, Quinine,Sulphate, Quinine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome
D013764 Tetrahydronaphthalenes Partially saturated 1,2,3,4-tetrahydronaphthalene compounds. Tetralins

Related Publications

A G Sanz, and S Hospital, and A Badia, and M V Clos
January 2000, Neuropharmacology,
A G Sanz, and S Hospital, and A Badia, and M V Clos
November 1995, Neuropharmacology,
A G Sanz, and S Hospital, and A Badia, and M V Clos
October 1979, Biochemical pharmacology,
A G Sanz, and S Hospital, and A Badia, and M V Clos
April 2001, Synapse (New York, N.Y.),
A G Sanz, and S Hospital, and A Badia, and M V Clos
January 1989, Neuroscience letters,
A G Sanz, and S Hospital, and A Badia, and M V Clos
January 2005, The Journal of pharmacology and experimental therapeutics,
A G Sanz, and S Hospital, and A Badia, and M V Clos
January 2001, Neurochemistry international,
A G Sanz, and S Hospital, and A Badia, and M V Clos
October 1993, Neurochemical research,
A G Sanz, and S Hospital, and A Badia, and M V Clos
June 1989, Toxicology and applied pharmacology,
A G Sanz, and S Hospital, and A Badia, and M V Clos
August 1996, Biochemical pharmacology,
Copied contents to your clipboard!