Expression, activity and distribution of Na,K-ATPase subunits during in vitro neuronal induction. 2000

A Habiba, and G Blanco, and R W Mercer
Department of Pediatrics (Newborn Medicine), Washington University School of Medicine, St. Louis Children's Hospital, 1 Children's Place, St. Louis, MO 63110, USA. habiba_a@kids.wustl.edu

The expression pattern of the alpha and beta isoforms and the gamma subunit of the Na,K-ATPase was investigated during in vitro induction of pluripotent murine embryonic stem (ES) cells into neuronal cells. alpha1 protein was expressed in undifferentiated ES (UES) cells and throughout all stages studied. In contrast, alpha3 protein was prominent only when neuronal cells have reached full differentiation. In this model, neuron-depleted cultures did not express the alpha3 isoform, indicating its specificity for mature neuronal cells. UES possessed Na,K-ATPase activity consistent with a single isoform (alpha1), whereas in fully mature neuronal cells a ouabain-sensitive isoform (alpha3) accounted for 27+/-4% of the activity, and a ouabain-resistant isoform (alpha1) 66+/-3%. Immunocytochemistry of mature neuronal cells for alpha1 and alpha3 proteins showed a similar distribution, including cell soma and processes, without evidence of polarization. beta1 protein was expressed in uninduced ES, embryonic bodies (EB) and neuronal cells. While proteins of the beta2 and beta3 isoforms were not detected by immunoblots (except for beta2 in UES), their mRNAs were detected in UES and EB (beta2 and beta3), and in immature and fully differentiated neuronal cells (beta3). Message for the beta2 isoform, however, was not present in neuronal cells. gamma subunit mRNA and protein were undetectable at any stage. These results provide further characterization of neuron-like cells obtained by induction of ES cells in vitro, and establish a model for the expression of isoforms of the Na,K-ATPase during neuronal differentiation. The relation to other aspects of neuronal cell development and relevance to a specialised function for the alpha3 subunit in neurons are discussed.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

A Habiba, and G Blanco, and R W Mercer
January 1988, Progress in clinical and biological research,
A Habiba, and G Blanco, and R W Mercer
September 2001, American journal of physiology. Cell physiology,
A Habiba, and G Blanco, and R W Mercer
October 2014, Journal of the Association for Research in Otolaryngology : JARO,
A Habiba, and G Blanco, and R W Mercer
January 1999, The Journal of membrane biology,
A Habiba, and G Blanco, and R W Mercer
April 2015, Development genes and evolution,
A Habiba, and G Blanco, and R W Mercer
March 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A Habiba, and G Blanco, and R W Mercer
January 1988, Progress in clinical and biological research,
A Habiba, and G Blanco, and R W Mercer
January 2015, Frontiers in cell and developmental biology,
A Habiba, and G Blanco, and R W Mercer
September 2008, Current opinion in nephrology and hypertension,
Copied contents to your clipboard!