UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. 2000

R L Gourse, and W Ross, and T Gaal
Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA. rgourse@bact.wisc.edu

In recent years, it has become clear that promoter recognition by bacterial RNA polymerase involves interactions not only between core promoter elements and the sigma subunit, but also between a DNA element upstream of the core promoter and the alpha subunit. DNA binding by alpha can increase transcription dramatically. Here we review the current state of our understanding of the alpha interaction with DNA during basal transcription initiation (i.e. in the absence of proteins other than RNA polymerase) and activated transcription initiation (i.e. when stimulated by transcription factors).

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

R L Gourse, and W Ross, and T Gaal
March 2004, Proceedings of the National Academy of Sciences of the United States of America,
R L Gourse, and W Ross, and T Gaal
November 2002, Research in microbiology,
R L Gourse, and W Ross, and T Gaal
January 2016, Biochemical and biophysical research communications,
R L Gourse, and W Ross, and T Gaal
November 1992, Molecular microbiology,
R L Gourse, and W Ross, and T Gaal
January 1993, Cellular & molecular biology research,
R L Gourse, and W Ross, and T Gaal
May 1994, The Journal of biological chemistry,
R L Gourse, and W Ross, and T Gaal
September 1997, The EMBO journal,
R L Gourse, and W Ross, and T Gaal
August 1996, Molecular microbiology,
R L Gourse, and W Ross, and T Gaal
April 2016, PLoS computational biology,
Copied contents to your clipboard!