Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. 2000

G G Emerson, and S S Segal
John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA.

Endothelial cells (ECs) govern smooth muscle cell (SMC) tone via the release of paracrine factors (eg, NO and metabolites of arachidonic acid). We tested the hypothesis that ECs can promote SMC relaxation or contraction via direct electrical coupling. Vessels (resting diameter, 57+/-3 microm; length, 4 mm) were isolated, cannulated, and pressurized (75 mm Hg; 37 degrees C). Two microelectrodes were used to simultaneously impale 2 cells (ECs or SMCs) in the vessel wall separated by 500 microm. Impalements of one EC and one SMC (n=26) displayed equivalent membrane potentials at rest, during spontaneous oscillations, and during hyperpolarization and vasodilation to acetylcholine. Injection of -0.8 nA into an EC caused hyperpolarization ( approximately 5 mV) and relaxation of SMCs (dilation, approximately 5 microm) along the vessel segment. In a reciprocal manner, +0.8 nA caused depolarization ( approximately 2 mV) of SMCs with constriction ( approximately 2 microm). Current injection into SMCs while recording from ECs produced similar results. We conclude that ECs and SMCs are electrically coupled to each other in these vessels, such that electrical signals conducted along the endothelium can be directly transmitted to the surrounding smooth muscle to evoke vasomotor responses.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

G G Emerson, and S S Segal
January 1997, Pflugers Archiv : European journal of physiology,
G G Emerson, and S S Segal
January 1998, Journal of vascular research,
G G Emerson, and S S Segal
March 2008, American journal of physiology. Cell physiology,
G G Emerson, and S S Segal
January 1998, Annals of biomedical engineering,
G G Emerson, and S S Segal
October 1985, Chest,
G G Emerson, and S S Segal
April 1994, The American journal of physiology,
G G Emerson, and S S Segal
December 2003, Medecine sciences : M/S,
G G Emerson, and S S Segal
January 2004, Microcirculation (New York, N.Y. : 1994),
G G Emerson, and S S Segal
November 2015, Pathology international,
Copied contents to your clipboard!