Attachment of lipoprotein to murein (peptidoglycan) of Escherichia coli in the presence and absence of penicillin FL 1060. 1975

V Braun, and H Wolff

In vivo studies on the attachment of lipoprotein to the murein (peptidoglycan) of Escherichia coli showed that it takes several generations of growth until the amount of lipoprotein on newly made murein is equilibrated. The technique used involves degradation of the sodium dodecyl sulfate-insoluble murein-lipoprotein complex (sacculus, rigid layer) with lysozyme and separation of the labeled products on paper. No lipoprotein was found on murein subunits incorporated during a pulse of [3H]diaminopimelate for 1 min in logarithmically growing cells at 37 C. Even after one doubling of the cell mass, only 4 to 8% of the labeled murein was isolated as bound to lipoprotein. With uniformly labeled murein, 30% remains bound to lipoprotein after lysozyme treatment, corresponding to three murein subunits. Therefore it can be concluded that during pulse labeling either no lipoprotein is incorporated into the newly synthesized murein or no murein subunits are inserted into existing murein around lipoprotein attachment sites. Longer pulse and pulse-chase experiments argue for the latter interpretation. It is therefore concluded that incorporation of murein subunits into the growing murein polymer is not at all a random process. Instead, quite large areas of murein, on which lipoprotein is situated, seem to be preserved. Under the influence of penicillin FL 1060 murein synthesis is 50% inhibited. The rate of lipoprotein attachment is less affected so that increasing amounts of lipoprotein become attached during spheroplast formation. By the time the stationary growth phase has been reached, the lipoprotein content of the murein has doubled. Diaminopimelate auxotrophic mutants require, in the presence of penicillin FL 1060, more diaminopimelate for full growth than in the absence of penicillin FL 1060. This finding and the fact that murein synthesis is always inhibited by 50% over a wide range of penicillin concentration (1 to 1,000 mug/ml) point to the inhibition of an enzymatic step of murein synthesis which can be partially bypassed by a second enzyme, less efficient but resistant to penicillin FL 1060.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010406 Penicillins A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065) Antibiotics, Penicillin,Penicillin,Penicillin Antibiotics
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003960 Diaminopimelic Acid A diamino derivative of heptanedioic acid with amino groups at C-2 and C-6 and the general formula (COOH)CH(NH2)CH2CH2CH2CH(NH2)(COOH). 2,6-Diaminopimelic Acid,2,6 Diaminopimelic Acid,Acid, 2,6-Diaminopimelic,Acid, Diaminopimelic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

V Braun, and H Wolff
March 1982, European journal of biochemistry,
V Braun, and H Wolff
September 2008, Biochimica et biophysica acta,
V Braun, and H Wolff
May 1974, Annals of the New York Academy of Sciences,
V Braun, and H Wolff
April 1976, Journal of bacteriology,
V Braun, and H Wolff
October 1983, Journal of bacteriology,
V Braun, and H Wolff
January 1980, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!