Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed in Xenopus laevis oocytes. 2000

M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
Departamento de Fisiologia y Nutrición, Universidad de Navarra, Pamplona, Spain.

The concentrative pyrimidine-preferring nucleoside transporter 1 (hCNT1), cloned from human fetal liver, was expressed in Xenopus laevis oocytes. Using the two-electrode voltage-clamp technique, it is shown that translocation of nucleosides by this transporter generates sodium inward currents. Membrane hyperpolarization (from -50 to -150 mV) did not affect the K(0.5) for uridine, although it increased the transport current approximately 3-fold. Gemcitabine (a pyrimidine nucleoside-derived drug) but not fludarabine (a purine nucleoside-derived drug) induced currents in oocytes expressing the hCNT1 transporter. The K(0.5) value for gemcitabine at -50 mV membrane potential was lower than that for natural substrates, although this drug induced a lower current than uridine and cytidine, thus suggesting that the affinity binding of the drug transporter is high but that translocation occurs more slowly. The analysis of the currents generated by the hCNT1-mediated transport of nucleoside-derived drugs used in anticancer and antiviral therapies will be useful in the characterization of the pharmacological profile of this family of drug transporters and will allow rapid screening for uptake of newly developed nucleoside-derived drugs.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003562 Cytidine A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. Cytosine Ribonucleoside,Cytosine Riboside,Ribonucleoside, Cytosine,Riboside, Cytosine
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000093542 Gemcitabine A deoxycytidine antimetabolite used as an antineoplastic agent. 2',2'-Difluoro-2'-Deoxycytidine,2',2'-Difluorodeoxycytidine,2'-Deoxy-2',2''-Difluorocytidine-5'-O-Monophosphate,2'-Deoxy-2'-Difluorocytidine,Gemcitabine Hydrochloride,Gemcitabine, (D-threo-pentafuranosyl)-Isomer,Gemcitabine, (alpha-D-threo-pentofuranosyl)-Isomer,Gemcitabine, (beta-D-threo-pentafuranosyl)-Isomer,Gemicitabine,2',2'-DFDC,Gemzar,LY 188011,LY-188011,dFdCyd,188011, LY,2' Deoxy 2' Difluorocytidine,2' Deoxy 2',2'' Difluorocytidine 5' O Monophosphate,Hydrochloride, Gemcitabine

Related Publications

M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
November 1992, The Journal of biological chemistry,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
August 2007, The Journal of pharmacology and experimental therapeutics,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
August 2004, The Journal of physiology,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
May 1999, Molecular pharmacology,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
January 2000, Nucleosides, nucleotides & nucleic acids,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
December 2022, Environmental toxicology and chemistry,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
July 1998, The Biochemical journal,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
July 1993, The Journal of biological chemistry,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
September 2000, Drug metabolism and disposition: the biological fate of chemicals,
M P Lostao, and J F Mata, and I M Larrayoz, and S M Inzillo, and F J Casado, and M Pastor-Anglada
September 1991, The Biochemical journal,
Copied contents to your clipboard!