Molecular approaches to receptors as targets for drug discovery. 2000

D B Evans, and P Traxler, and C García-Echeverría
Novartis Pharma AG, Basel, Switzerland.

Many receptors have been selected as viable drug discovery targets. One particular class of receptors that have received much interest and so far relatively good success are the receptor protein tyrosine kinases (RPTKs). Typically, RPTKs are activated following the binding of the peptide growth factor ligand to its receptor. The RPTKs play crucial roles in signal transduction pathways that regulate a number of cellular functions, such as cell differentiation and proliferation, both under normal physiological conditions as well as in a variety of pathological disorders. A variety of different tumour types have been shown to have dysfunctional RPTKs, either as a result of excess production of the growth factor, the receptor or both, or via mutations in the RPTKs structure. Irrespective of the cause, this leads to the over-activity of the particular RPTK system and in turn to the aberrant and inappropriate cellular signalling within the tumour cell. RPTKs are attractive targets in the search for therapeutic agents, not only against cancers but also against many other disease indications. Although an ever-increasing number of RPTKs have been selected as viable molecular targets for drug discovery programmes, four examples will be covered in this article. These are the epidermal growth factor receptor (EGF-R), platelet-derived growth factor receptor (PDGF-R), fibroblast growth factor receptor (FGR-R) and vascular endothelial growth factor receptor (VEGF-R), with the main emphasis of interest being on their role in oncology.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017468 Receptors, Fibroblast Growth Factor Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity. FGF Receptor Complex,FGF Receptor Complexes,FGF Receptors,Fibroblast Growth Factor Receptors,Receptors, FGF,FGF Receptor,Fibroblast Growth Factor Receptor,Heparin-Binding Growth Factor Receptor,Heparin Binding Growth Factor Receptor,Receptor, FGF
D017479 Receptors, Platelet-Derived Growth Factor Specific receptors on cell membranes that react with PLATELET-DERIVED GROWTH FACTOR, its analogs, or antagonists. The alpha PDGF receptor (RECEPTOR, PLATELET-DERIVED GROWTH FACTOR ALPHA) and the beta PDGF receptor (RECEPTOR, PLATELET-DERIVED GROWTH FACTOR BETA) are the two principle types of PDGF receptors. Activation of the protein-tyrosine kinase activity of the receptors occurs by ligand-induced dimerization or heterodimerization of PDGF receptor types. PDGF Receptors,Platelet-Derived Growth Factor Receptors,Receptors, PDGF,PDGF Receptor,Platelet-Derived Growth Factor Receptor,Platelet Derived Growth Factor Receptor,Platelet Derived Growth Factor Receptors,Receptor, PDGF,Receptors, Platelet Derived Growth Factor
D017978 Receptors, Growth Factor Cell surface receptors that bind growth or trophic factors with high affinity, triggering intracellular responses which influence the growth, differentiation, or survival of cells. Growth Factor Receptor,Growth Factor Receptors,Trophic Factor Receptors,Receptors, Growth Factors,Receptors, Trophic Factor,Trophic Factor Receptor,Factor Receptor, Growth,Factor Receptor, Trophic,Growth Factors Receptors,Receptor, Growth Factor,Receptor, Trophic Factor

Related Publications

D B Evans, and P Traxler, and C García-Echeverría
September 1997, Journal of receptor and signal transduction research,
D B Evans, and P Traxler, and C García-Echeverría
June 2007, Infectious disorders drug targets,
D B Evans, and P Traxler, and C García-Echeverría
April 2005, Nihon rinsho. Japanese journal of clinical medicine,
D B Evans, and P Traxler, and C García-Echeverría
April 2005, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
D B Evans, and P Traxler, and C García-Echeverría
December 1997, Journal of medicinal chemistry,
D B Evans, and P Traxler, and C García-Echeverría
November 1993, Bio/technology (Nature Publishing Company),
D B Evans, and P Traxler, and C García-Echeverría
January 2000, Annual review of pharmacology and toxicology,
D B Evans, and P Traxler, and C García-Echeverría
January 2006, Current pharmaceutical design,
D B Evans, and P Traxler, and C García-Echeverría
January 2009, Antiviral research,
D B Evans, and P Traxler, and C García-Echeverría
June 2005, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!