Effects of the protein tyrosine phosphatase CD45 on FcgammaRIIa signaling and neutrophil function. 2000

H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
Department of Microbiology/Immunology, West Virginia University, Morgantown, WVa., USA.

OBJECTIVE Neutrophil receptors for the Fc portion of IgG (FcgammaR) trigger immune responses following cross-linking by IgG-coated foreign particles or immune complexes. Membrane-associated CD45, a protein tyrosine phosphatase termed leukocyte common antigen, has been shown to be essential for antigen receptor kinase mediated signaling in lymphocytes, and we hypothesized that CD45 may play a similar role in FcgammaR-mediated signaling and immune function in human neutrophils. METHODS The experimental approach was that of cell surface molecule ligation via cross-linking with specific antibodies. Antibody dependent cellular cytotoxicity (ADCC) was assessed using a single-cell plaque assay and IL-6 production measured using ELISA. Tyrosine phosphorylation levels were assessed with anti-phospho-tyrosine blots and F-actin polymerization by flow cytometry and confocal microscopy. RESULTS Neutrophils pretreated with anti-CD45 had a reduced ability to perform ADCC compared to untreated neutrophils. FcgammaRIIa cross-linking resulted in significantly increased concentrations of secreted IL-6 compared to untreated neutrophils, and IL-6 production was further enhanced by cocross-linking CD45 with FcgammaRIIa. Cross-linking CD45 alone also induced IL-6 production. FcgammaRIIa cross-linking resulted in increased protein tyrosine phosphorylation and F-actin polymerization in neutrophils. Cocross-linking CD45 with FcgammaRIIa resulted in abrogation of FcgammaRIIa mediated tyrosine phosphorylation and F-actin polymerization. CONCLUSIONS These data provide evidence that CD45 can regulate or enhance the stimulation and function of human neutrophils mediated through FcgammaR(s). In addition, CD45 ligation may play an essential role in cytokine induction pathways that lead to inflammatory reactions in vivo.

UI MeSH Term Description Entries
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
January 1992, Advances in experimental medicine and biology,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
January 2003, Current topics in medicinal chemistry,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
January 1996, The Journal of biological chemistry,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
April 2004, Biochemistry,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
February 2005, The Journal of experimental medicine,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
May 2001, Journal of medicinal chemistry,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
June 2021, Journal of virology,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
May 2004, Blood,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
March 1993, Molecular and cellular biology,
H Gao, and A Henderson, and D C Flynn, and K S Landreth, and S G Ericson
November 2001, The international journal of biochemistry & cell biology,
Copied contents to your clipboard!