Color-opponent responses of small and giant bipolar cells in the carp retina. 2000

K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
Department of Physiology, St. Marianna University School of Medicine. Kawasaki, Japan. k2shimbo@marianna-u.ac.jp

The physiological and morphological properties of color-opponent bipolar cells in the carp retina were studied. Fifty nine OFF-center bipolar cells and 63 ON-center bipolar cells out of about 500 total bipolar cells recorded showed color-opponent responses. The OFF-center color-opponent bipolar cells were classified into three subgroups according to their spectral and spatial responses. Fifty OFF-center color-opponent cells responded with depolarization to a blue light spot and with hyperpolarization to a red spot in the receptive-field center. The polarity of the surround response was opposite to that of center response at each wavelength. Therefore these cells were classified as OFF double-opponent cells (OFF-DO). Eight cells responded with hyperpolarization to a blue and green spot and with depolarization to a red spot. The surround responses of those cells were depolarizing at any wavelength (R+G- cell). One responded with hyperpolarization to a blue and red spot and with depolarization to a green spot. The surround response showed a different spectral characteristic from that of the center response. It responded with depolarization to a blue and green annulus and with hyperpolarization to a red annulus (R-G+B- cell). The ON-center color-opponent bipolar cells were similarly classified into three subgroups. Sixty of ON-center color-opponent cells were the double color-opponent type (ON-DO cell), showing the responses of opposite polarity to the OFF-DO cells. Two cells were classified as R- G+ cell, and one cell as R+G-B+ cell. Both OFF- and ON-DO cells were identified by their morphology as Cajal's giant bipolar cells, and R+G-, R-G+, R-G+B-, and R+G-B+ cells as Cajal's small bipolar cells. The analysis of the latency and the ionic mechanisms of their responses suggest that DO cells under light-adapted conditions receive direct inputs from long-wavelength (red) cones, RG cells from middle-wavelength (green) cones, and RGB cells from short-wavelength (blue) cones. Possible mechanisms of the opponent inputs to these bipolar cells are discussed.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
May 1998, Brain research,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
September 2002, Brain research bulletin,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
December 1978, Sensory processes,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
January 1991, Vision research,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
January 1983, Vision research,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
July 2005, Journal of neurophysiology,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
April 1960, Science (New York, N.Y.),
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
January 2002, Journal of vision,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
February 1979, Experimental eye research,
K Shimbo, and J I Toyoda, and H Kondo, and T Kujiraoka
May 1968, Journal of the Optical Society of America,
Copied contents to your clipboard!