Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. 2000

K Ganguly, and L Kiss, and M Poo
Program in Neuroscience, University of California at San Diego, La Jolla, California 92093-0357, USA.

Use-dependent modifications, such as long-term potentiation (LTP) of synaptic efficacy, are believed to be essential for information storage in the nervous system. Repetitive correlated spiking of presynaptic and postsynaptic neurons can induce LTP at excitatory glutamatergic synapses. In cultured hippocampal neurons, we show that repetitive correlated activity also results in a rapid and persistent enhancement of presynaptic excitability, decreasing the threshold for spiking and reducing the variability of interspike intervals. Furthermore, we found that correlated activity modified sodium channel gating in the presynaptic neuron. This modification of presynaptic excitability required a temporal order between presynaptic and postsynaptic spiking and activation of postsynaptic NMDA receptors. Presynaptic inhibition of protein kinase C abolished the change in excitability without affecting LTP. Such rapid activity-dependent changes in the efficacy of presynaptic spiking may be involved in the processing and storage of information within the nervous system.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

K Ganguly, and L Kiss, and M Poo
June 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Ganguly, and L Kiss, and M Poo
August 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Ganguly, and L Kiss, and M Poo
January 2021, Frontiers in molecular neuroscience,
K Ganguly, and L Kiss, and M Poo
July 2007, Developmental biology,
K Ganguly, and L Kiss, and M Poo
September 2017, PLoS computational biology,
K Ganguly, and L Kiss, and M Poo
February 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!