Synthesis and degradation of early mRNA in lambda phage. 1975

Y Takeda, and M Kuwano

Using two different Escherichia coli mutants defective in elongation factors EFG and EFTs required for peptide synthesis, lambda phage with or without a tof mutation was analysed for synthesis of early mRNA by DNA-RNA hybridization technique. (1) In CP78G carrying temperature-sensitive elongation factor G, shift-up to high temperature (41 degrees C) in the middle of phage infection did not affect early mRNA synthesis with lambdatof+ phage but did inhibit it with lambdatof- phage. (2) In HAK88 carrying temperature-sensitive elongation factor Ts, shift-up to 41 degrees C dropped total cellular RNA synthesis to below 10-20 percent of the control in the presence or absence of phage infection (stringent control). Under such a condition for suppressed protein synthesis, lambda early mRNA synthesis was completely blocked with both tof+ and tof- phage infection. Thus, stringent control seems to exert its effect on lambda early mRNA synthesis. (3) Addition of chloramphenicol, which is known to relax the stringent control of RNA synthesis, to the culture of phage-infected HAK88 at 41 degrees C resulted in full recovery of tof+-mRNA synthesis, but only in partial recovery to tof --mRNA synthesis. (4) Analysis of the stability of lambda mRNA indicated an exponential decay, and a halflife of tof --mRNA of 6 min when that of tof+-mRNA was 13 min at 37 degrees C.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010441 Peptide Chain Elongation, Translational A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES. Chain Elongation, Peptide, Translational,Protein Biosynthesis Elongation,Protein Chain Elongation, Translational,Protein Translation Elongation,Translation Elongation, Genetic,Translation Elongation, Protein,Translational Elongation, Protein,Translational Peptide Chain Elongation,Biosynthesis Elongation, Protein,Elongation, Genetic Translation,Elongation, Protein Biosynthesis,Elongation, Protein Translation,Elongation, Protein Translational,Genetic Translation Elongation,Protein Translational Elongation
D010445 Peptide Elongation Factors Protein factors uniquely required during the elongation phase of protein synthesis. Elongation Factor,Elongation Factors, Peptide,Factor, Elongation,Factors, Peptide Elongation
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

Y Takeda, and M Kuwano
September 1975, Biochimica et biophysica acta,
Y Takeda, and M Kuwano
June 1967, Journal of molecular biology,
Y Takeda, and M Kuwano
January 1976, Revista latinoamericana de microbiologia,
Y Takeda, and M Kuwano
January 1982, Doklady Akademii nauk SSSR,
Y Takeda, and M Kuwano
January 1980, Nature,
Y Takeda, and M Kuwano
November 1972, Proceedings of the National Academy of Sciences of the United States of America,
Y Takeda, and M Kuwano
December 1971, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!