Ionotropic glutamate receptor modulation preferentially affects NMDA receptor expression in rat hippocampus. 2000

D J Healy, and J H Meador-Woodruff
Mental Health Research Institute and Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109-0720, USA.

Electrophysiological data suggest that alterations in the function of one glutamate receptor subtype may affect the function of other subtypes. Further, previous studies have demonstrated that NMDA receptor antagonists affect NMDA and kainate receptor expression in rat hippocampus. In order to address the mutual regulation of NMDA, AMPA, and kainate receptor expression in rat hippocampus, we conducted two experiments examining the effects of NMDA and non-NMDA glutamate receptor modulators on NMDA, AMPA, and kainate receptor expression using in situ hybridization and receptor autoradiography. NMDA receptor expression was preferentially affected by systemic treatments, as all drugs significantly altered [(3)H]MK-801 binding, and several drugs increased [(3)H]ifenprodil binding. GYKI52466 and aniracetam treatments resulted in changes in both [(3)H]ifenprodil binding and NR2B mRNA levels, consistent with the association of this subunit and binding site in vitro. There were more modest effects on AMPA and kainate receptor expression, even by direct antagonists. Together, these data suggest that ionotropic glutamate receptors interact at the level of expression. These data also suggest that drug regimens targeting one ionotropic glutamate receptor subtype may indirectly affect other subtypes, potentially producing unwanted side effects.

UI MeSH Term Description Entries
D008297 Male Males
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018091 Receptors, AMPA A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). AMPA Receptors,Quisqualate Receptors,AMPA Receptor,Quisqualate Receptor,Receptor, AMPA,Receptor, Quisqualate,Receptors, Quisqualate
D018691 Excitatory Amino Acid Antagonists Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists. Amino Acids, Excitatory, Antagonists,Excitatory Amino Acid Antagonist,Glutamate Antagonist,Glutamate Antagonists,Glutamate Receptor Antagonist,Amino Acid Antagonists, Excitatory,Antagonists, Excitatory Amino Acid,EAA Antagonists,Glutamate Receptor Antagonists,Antagonist, Glutamate,Antagonist, Glutamate Receptor,Antagonists, EAA,Antagonists, Glutamate,Antagonists, Glutamate Receptor,Receptor Antagonist, Glutamate,Receptor Antagonists, Glutamate

Related Publications

D J Healy, and J H Meador-Woodruff
December 2002, Brain research. Developmental brain research,
D J Healy, and J H Meador-Woodruff
January 2021, Progress in neuro-psychopharmacology & biological psychiatry,
D J Healy, and J H Meador-Woodruff
September 2001, Neurochemical research,
D J Healy, and J H Meador-Woodruff
January 2000, Developmental neuroscience,
D J Healy, and J H Meador-Woodruff
May 2014, The Journal of physiology,
D J Healy, and J H Meador-Woodruff
August 1995, Behavioural pharmacology,
D J Healy, and J H Meador-Woodruff
September 2016, Neuroscience letters,
D J Healy, and J H Meador-Woodruff
October 2001, Alcoholism, clinical and experimental research,
Copied contents to your clipboard!