Synthesis and cytotoxicity of 4-amino-5-oxopyrido[2,3-d]pyrimidine nucleosides. 2000

J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
Chemistry and Cancer Biology Laboratories, ICN Pharmaceuticals, Inc., 3300 Hyland Avenue, Costa Mesa, California 92626, USA.

A number of nucleoside analogues have been either used clinically as anticancer drugs or evaluated in clinical studies, while new nucleoside analogues continue to show promise. In this article, we report synthesis and cytotoxicity of a series of new pyrido[2, 3-d]pyrimidine nucleosides. 2-Amino-3-cyano-4-methoxypyridine was converted, in two steps, to 4-amino-5-oxopyrido[2,3-d]pyrimidine. A variety of 1-O-acetylated pentose sugar derivatives were condensed with silylated 4-amino-5-oxopyrido[2,3-d]pyrimidine, followed by protection, to afford a series of 4-amino-5-oxopyrido[2, 3-d]pyrimidine nucleosides. Further derivatizations provided an additional group of pyrido[2,3-d]pyrimidine nucleosides. These nucleosides were evaluated for in vitro cytotoxicity to human prostate cancer (HTB-81) and mouse melanoma (B16) cells as well as normal human fibroblasts (NHF). A number of compounds (1a,b, 2a-c,f, 3f+4d) showed significant cytotoxicity to cancer cells, with 4-amino-5-oxo-8-(beta-D-ribofuranosyl)pyrido[2,3-d]pyrimidine (1b) being the most potent proliferation inhibitor (EC(50): 0.06-0.08 microM) to all types of cells tested. However, a selective inhibition to the cancer cells was observed for 4-amino-5-oxo-8-(beta-D-xylofuranosyl)pyrido[2,3-d]pyrimidine (2b), which is a potent inhibitor of HTB-81 (EC(50): 0.73 microM) and has a favorable in vitro selectivity index (28).

UI MeSH Term Description Entries
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
February 1977, The Journal of organic chemistry,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
July 1971, Chemical & pharmaceutical bulletin,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
January 2001, Nucleosides, nucleotides & nucleic acids,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
June 2016, Nucleosides, nucleotides & nucleic acids,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
January 2006, Nucleosides, nucleotides & nucleic acids,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
January 1997, Nucleic acids symposium series,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
January 2008, Bioorganicheskaia khimiia,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
January 2007, Nucleosides, nucleotides & nucleic acids,
J L Girardet, and E Gunic, and C Esler, and D Cieslak, and Z Pietrzkowski, and G Wang
January 2013, Bioorganicheskaia khimiia,
Copied contents to your clipboard!