Novel cannabinol probes for CB1 and CB2 cannabinoid receptors. 2000

A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
Organix, Inc., 240 Salem Street, Woburn, Massachusetts 01801, USA.

The observation that the phenolic hydroxyl of THCs was important for binding to the CB1 receptor but not as critical for binding to the CB2 receptor prompted us to extend this finding to the cannabinol (CBN) series. To study the SAR of CBN analogues, CBN derivatives with substitution at the C-1, C-3, and C-9 positions were chosen since these positions have played a key role in the SAR of THCs. CBN-3-(1',1'-dimethylheptyl) analogues were prepared by sulfur dehydrogenation of Delta(8)-THC-3-(1',1'-dimethylheptyl) analogues. 9-Substituted CBN analogues were prepared by the standard sulfur dehydrogenation of 9-substituted Delta(8)-THC analogues (Scheme 1), which in turn were prepared following our previous procedure using selenium dioxide oxidation of the corresponding Delta(8)-THCs followed by sodium chlorite oxidation to give the 9-carboxy-Delta(8)-THC derivatives. 11-Hydroxy-CBN analogues were prepared from the corresponding 9-carbomethoxy-CBN analogues by reduction with LiAlH(4). Deoxy-CBN analogue 14 was prepared from the corresponding Delta(8)-THC analogue 11 by conversion of the phenolic hydroxyl to the phosphate derivative 12, followed by lithium ammonia reduction to provide the deoxy-Delta(8)-THC analogue 13, which in turn was dehydrogenated with sulfur to provide the deoxy-CBN analogue 14 (Scheme 2). The various analogues were assayed for binding both to the brain and the peripheral cannabinoid receptors (CB1 and CB2). We have found that the binding profile differs widely between the CBN and the THC series. Specifically, in the CBN series the removal of the phenolic hydroxyl decreases binding affinity to both the CB1 and CB2 receptors, whereas in the THC series, CB1 affinity is selectively reduced. Thus, in the CBN series, the selectivity of binding observed with the removal of the hydroxy group is decreased severalfold as compared to what occurs in the THC series. Generally, high affinity for the CB2 receptor was found in analogues when the phenolic hydroxyl was present. The 3-(1', 1'-dimethylheptyl) derivatives were found to have much higher affinities than the CBN analogues, which is in complete agreement with previously reported work by Rhee et al.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002186 Cannabinoids Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL. Cannabinoid
D002187 Cannabinol A physiologically inactive constituent of Cannabis sativa L.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D043882 Receptors, Cannabinoid A class of G-protein-coupled receptors that are specific for CANNABINOIDS such as those derived from CANNABIS. They also bind a structurally distinct class of endogenous factors referred to as ENDOCANNABINOIDS. The receptor class may play a role in modulating the release of signaling molecules such as NEUROTRANSMITTERS and CYTOKINES. Cannabinoid Receptor,Cannabinoid Receptors,Receptor, Cannabinoid
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
January 1997, Pharmacology & therapeutics,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
January 2018, Frontiers in pharmacology,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
June 2012, The Journal of biological chemistry,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
February 2010, Biochemical pharmacology,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
April 2002, Pain,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
December 2005, Brain research,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
September 2020, Pharmacological research,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
December 1998, Journal of medicinal chemistry,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
August 2019, Future medicinal chemistry,
A Mahadevan, and C Siegel, and B R Martin, and M E Abood, and I Beletskaya, and R K Razdan
November 2018, Biochemical pharmacology,
Copied contents to your clipboard!