Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. 2000

G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
Department of Oncology, University of Western Ontario and London Regional Cancer Centre, London, Ontario, Canada. glenn.bauman@lrcc.on.ca

BACKGROUND Allelic loss of the short arm of chromosome 1 predicts radiographic response to chemotherapy and long overall survival times in patients with anaplastic oligodendrogliomas. Using a database of patients with oligodendrogliomas in whom chromosome 1p status was known, we explored whether allelic loss of 1p also predicted longer duration of tumor control when radiotherapy was part of the initial treatment of these patients. METHODS We measured progression-free survival following radiotherapy in a cohort of patients with World Health Organization (WHO) Grade II and WHO Grade III oligodendrogliomas. The effects on progression-free survival of patient age, Karnofsky performance score (KPS), tumor grade when irradiated and chromosome 1p status were examined by univariate and multivariate statistical analyses. For the subset of patients with newly diagnosed anaplastic oligodendrogliomas, relationships between use of chemotherapy, chromosome 1p status and progression-free survival were also examined. RESULTS Fifty-five patients (29 male, 26 female; ages 18-75 years; median, 44 years; KPS 50-90, median 80) were irradiated for either a WHO Grade II (n = 19) or Grade III (n = 36) oligodendroglioma. Twenty-eight patients had chemotherapy immediately prior to radiotherapy, and 27 had chemotherapy at progression following radiotherapy. The median radiation dose was 54 Gy in 30 fractions. Loss of heterozygosity (LOH) at chromosome 1p was evident in 36 tumors and absent in 19. Overall median progression-free survival after radiotherapy was 40.4 months. Median progression-free survival was 55.0 months for patients whose tumors harbored 1p loss vs. 6.2 months for those patients whose tumors retained both copies of chromosome 1p (p < 0.001). On both univariate and multivariate analyses, chromosome lp loss was the principal independent predictor of longer progression-free survival for patients with Grade II and III oligodendrogliomas. For Grade III oligodendrogliomas, chemotherapy as an adjunct to radiotherapy prolonged tumor control for those patients whose tumors harbored allelic loss of chromosome 1p (p = 0.004). CONCLUSIONS These data suggest allelic loss of chromosome 1p in patients with oligodendroglial neoplasms predicts longer progression-free survival among patients receiving radiotherapy +/- chemotherapy as part of their initial treatment. Chromosome 1p loss may be an important stratification variable in future therapeutic trials of oligodendroglioma.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009837 Oligodendroglioma A relatively slow-growing glioma that is derived from oligodendrocytes and tends to occur in the cerebral hemispheres, thalamus, or lateral ventricle. They may present at any age, but are most frequent in the third to fifth decades, with an earlier incidence peak in the first decade. Histologically, these tumors are encapsulated, relatively avascular, and tend to form cysts and microcalcifications. Neoplastic cells tend to have small round nuclei surrounded by unstained nuclei. The tumors may vary from well-differentiated to highly anaplastic forms. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2052; Adams et al., Principles of Neurology, 6th ed, p655) Oligodendroblastoma,Anaplastic Oligodendroglioma,Mixed Oligodendroglioma-Astrocytoma,Mixed Oligodendroglioma-Ependymoma,Oligodendroglioma, Adult,Oligodendroglioma, Childhood,Oligodendroglioma, Well-Differentiated,Well-Differentiated Oligodendroglioma,Adult Oligodendroglioma,Adult Oligodendrogliomas,Anaplastic Oligodendrogliomas,Childhood Oligodendroglioma,Childhood Oligodendrogliomas,Mixed Oligodendroglioma Astrocytoma,Mixed Oligodendroglioma Ependymoma,Mixed Oligodendroglioma-Astrocytomas,Mixed Oligodendroglioma-Ependymomas,Oligodendroblastomas,Oligodendroglioma, Anaplastic,Oligodendroglioma, Well Differentiated,Oligodendroglioma-Astrocytoma, Mixed,Oligodendroglioma-Astrocytomas, Mixed,Oligodendroglioma-Ependymoma, Mixed,Oligodendroglioma-Ependymomas, Mixed,Oligodendrogliomas,Oligodendrogliomas, Adult,Oligodendrogliomas, Anaplastic,Oligodendrogliomas, Childhood,Oligodendrogliomas, Well-Differentiated,Well Differentiated Oligodendroglioma,Well-Differentiated Oligodendrogliomas
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D002878 Chromosomes, Human, Pair 1 A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification. Chromosome 1
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
August 2008, Neuropathology : official journal of the Japanese Society of Neuropathology,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
June 1996, The New England journal of medicine,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
June 2002, Oncogene,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
September 2005, Molecular cancer,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
September 1997, Gastroenterology,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
January 1996, The New England journal of medicine,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
January 2014, International journal of clinical and experimental pathology,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
January 1994, Progress in clinical and biological research,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
April 2009, Cancer genetics and cytogenetics,
G S Bauman, and Y Ino, and K Ueki, and M C Zlatescu, and B J Fisher, and D R Macdonald, and L Stitt, and D N Louis, and J G Cairncross
January 2010, International journal of molecular medicine,
Copied contents to your clipboard!