Glucose dependent alterations of mitochondrial ultrastructure and enzyme content in mouse pancreatic islets maintained in tissue culture: a morphometrical and biochemical study. 1975

L A Borg, and A Andersson, and C Berne, and J Westman

Isolated islets of Langerhans from mice were maintained in tissue culture for one week at either a high (28 mM) or a low (3.3 mM) extracellular glucose concentration. Electron microscopic morphometry by means of stereological methods revealed a much greater volume of mitochondria in islet cells cultured at low glucose than in those cultured at high glucose. The former islets also showed a higher activity of the mitochondrial marker enzyme, L-3-hydroxyacyl-CoA-dehyrogenase (E.C.1.1.1.35). These results indicate a true mitochondrial hypertrophy at the low glucose concentration. Although it is known from previous studies that the islet cell metabolism is diminished after low-glucose culture, the present observations of an increased mitochondrial volume probably do not reflect a degenerative process, but rather adaptive changes towards oxidation of energy yielding substrates other than glucose.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008933 Mitochondrial Swelling An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D003065 Coenzyme A CoA,CoASH
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L A Borg, and A Andersson, and C Berne, and J Westman
March 1978, Acta endocrinologica,
L A Borg, and A Andersson, and C Berne, and J Westman
June 1974, The Biochemical journal,
L A Borg, and A Andersson, and C Berne, and J Westman
January 1981, Upsala journal of medical sciences,
L A Borg, and A Andersson, and C Berne, and J Westman
February 1974, Biochemical and biophysical research communications,
L A Borg, and A Andersson, and C Berne, and J Westman
July 1978, Diabetes,
L A Borg, and A Andersson, and C Berne, and J Westman
April 1975, Endocrinology,
L A Borg, and A Andersson, and C Berne, and J Westman
January 1974, Upsala journal of medical sciences,
Copied contents to your clipboard!