Potentiation by neostigmine of responses to vagal nerve stimulation in the sinus venosus of the toad. 2000

N J Bramich, and J A Brock, and G D Hirst
Department of Zoology, University of Melbourne, Parkville, Victoria, Australia. n.bramich@zoology.unimelb.edu.au

The effects of the cholinesterase inhibitor neostigmine on the responses to vagus nerve stimulation of isolated sinus venosus/atrial preparations of the toad, Bufo marinus, were examined. In control solutions, trains of stimuli applied to the vagus nerve led to a decrease in heart rate that was susceptible to muscarinic receptor blockade. Membrane potential recordings made from sinus venosus cells showed that the responses to trains of stimuli, delivered at frequencies of less than 10 Hz, were little changed by the addition of neostigmine. However, the responses to longer trains of stimuli at 10 Hz (30 versus 10 s) were potentiated and the nature of the membrane potential changes was altered. The results suggest that, due to the activity of cholinesterases, acetylcholine (ACh) released from parasympathetic nerves normally has little access to the muscarinic receptors in the pacemaker region, which are linked to potassium channels.

UI MeSH Term Description Entries
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

N J Bramich, and J A Brock, and G D Hirst
August 1989, The Journal of physiology,
N J Bramich, and J A Brock, and G D Hirst
June 1990, The Journal of physiology,
N J Bramich, and J A Brock, and G D Hirst
October 1990, The Journal of physiology,
N J Bramich, and J A Brock, and G D Hirst
January 1971, Pflugers Archiv : European journal of physiology,
N J Bramich, and J A Brock, and G D Hirst
January 1999, The American journal of physiology,
N J Bramich, and J A Brock, and G D Hirst
September 1955, Nature,
N J Bramich, and J A Brock, and G D Hirst
September 1993, Neuropeptides,
N J Bramich, and J A Brock, and G D Hirst
July 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
N J Bramich, and J A Brock, and G D Hirst
September 1955, The Journal of physiology,
Copied contents to your clipboard!