Development of spontaneous glycinergic currents in the Mauthner neuron of the zebrafish embryo. 2000

D W Ali, and P Drapeau, and P Legendre
Center for Research in Neuroscience, McGill University; and Montreal General Hospital Research Institute, Montreal, Quebec H3G 1A4, Canada.

We used whole cell and outside-out patch-clamp techniques with reticulospinal Mauthner neurons of zebrafish embryos to investigate the developmental changes in the properties of glycinergic synaptic currents in vivo from the onset of synaptogenesis. Miniature inhibitory postsynaptic currents (mIPSCs) were isolated and recorded in the presence of TTX (1 microM), kynurenic acid (1 mM), and bicuculline (10 microM) and were found to be sensitive to strychnine (1 microM). The mIPSCs were first observed in 26-29 h postfertilization (hpf) embryos at a very low frequency of approximately 0.04 Hz, which increased to approximately 0.5 Hz by 30-40 hpf, and was approximately 10 Hz in newly hatched (>50 hpf) larvae, indicating an accelerated increase in synaptic activity. At all embryonic stages, the amplitudes of the mIPSCs were variable but their means were similar ( approximately 100 pA), suggesting rapid formation of the postsynaptic matrix. The 20-80% rise times of mIPSCs in embryos were longer (0.6-1.2 ms) than in larvae (approximately 0.3 ms), likely due to slower diffusion of glycine at the younger, immature synapses. The mIPSCs decayed with biexponential (tau(off1) and tau(off2)) time courses with a half-width in 26-29 hpf embryos that was longer and more variable than in older embryos and larvae. In 26- to 29-hpf embryos, tau(off1) was approximately 15 ms and tau(off2) was approximately 60 ms, representing events of intermediate duration; but occasionally long mIPSCs were observed in some cells where tau(off1) was approximately 40 ms and tau(off2) was approximately 160 ms. In 30-40 hpf embryos, the events were faster, with tau(off1) approximately 9 ms and tau(off2) approximately 40 ms, and in larvae, events declined somewhat further to tau(off1) approximately 4 ms and tau(off2) approximately 30 ms. Point-per-point amplitude histograms of the decay of synaptic events at all stages resulted in the detection of similar single channel conductances estimated as approximately 45 pS, indicating the presence of heteromeric glycine receptors (GlyRs) from the onset of synaptogenesis. Fast-flow (1 ms) application of a saturating concentration of glycine (3-10 mM) to outside-out patches obtained at 26-29 hpf revealed GlyR currents that decayed biexponentially with time constants resembling the values found for intermediate and long mIPSCs; by 30-40 hpf, the GlyR currents resembled fast mIPSCs. These observations indicate that channel kinetics limited the mIPSC duration. Our data suggest that glycinergic mIPSCs result from the activation of a mixture of fast and slow GlyR subtypes, the properties and proportion of which determine the decay of the synaptic events in the embryos.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra

Related Publications

D W Ali, and P Drapeau, and P Legendre
July 2011, Neuroscience research,
D W Ali, and P Drapeau, and P Legendre
May 1981, The Journal of comparative neurology,
D W Ali, and P Drapeau, and P Legendre
October 1994, The European journal of neuroscience,
D W Ali, and P Drapeau, and P Legendre
February 2001, Journal of neurophysiology,
D W Ali, and P Drapeau, and P Legendre
January 2009, Frontiers in molecular neuroscience,
D W Ali, and P Drapeau, and P Legendre
March 2016, Birth defects research. Part C, Embryo today : reviews,
D W Ali, and P Drapeau, and P Legendre
January 2016, Frontiers in molecular neuroscience,
D W Ali, and P Drapeau, and P Legendre
April 2008, Neuropharmacology,
Copied contents to your clipboard!