Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. 2000

U O'Doherty, and W J Swiggard, and M H Malim
Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.

The study of early events in the human immunodeficiency virus type 1 (HIV-1) life cycle can be limited by the relatively low numbers of cells that can be infected synchronously in vitro. Although the efficiency of HIV-1 infection can be substantially improved by centrifugal inoculation (spinoculation or shell vial methods), the underlying mechanism of enhancement has not been defined. To understand spinoculation in greater detail, we have used real-time PCR to quantitate viral particles in suspension, virions that associate with cells, and the ability of those virions to give rise to reverse transcripts. We report that centrifugation of HIV-1(IIIB) virions at 1,200 x g for 2 h at 25 degrees C increases the number of particles that bind to CEM-SS T-cell targets by approximately 40-fold relative to inoculation by simple virus-cell mixing. Following subsequent incubation at 37 degrees C for 5 h to allow membrane fusion and uncoating to occur, the number of reverse transcripts per target cell was similarly enhanced. Indeed, by culturing spinoculated samples for 24 h, approximately 100% of the target cells were reproducibly shown to be productively infected, as judged by the expression of p24(gag). Because the modest g forces employed in this procedure were found to be capable of sedimenting viral particles and because CD4-specific antibodies were effective at blocking virus binding, we propose that spinoculation works by depositing virions on the surfaces of target cells and that diffusion is the major rate-limiting step for viral adsorption under routine in vitro pulsing conditions. Thus, techniques that accelerate the binding of viruses to target cells not only promise to facilitate the experimental investigation of postentry steps of HIV-1 infection but should also help to enhance the efficacy of virus-based genetic therapies.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002498 Centrifugation Process of using a rotating machine to generate centrifugal force to separate substances of different densities, remove moisture, or simulate gravitational effects. It employs a large motor-driven apparatus with a long arm, at the end of which human and animal subjects, biological specimens, or equipment can be revolved and rotated at various speeds to study gravitational effects. (From Websters, 10th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D006112 Gravitation Acceleration produced by the mutual attraction of two masses, and of magnitude inversely proportional to the square of the distance between the two centers of mass. It is also the force imparted by the earth, moon, or a planet to an object near its surface. (From NASA Thesaurus, 1988) G Force,Gravistimulation,Gravity,Force, G,G Forces,Gravities
D006583 Hexadimethrine Bromide A synthetic polymer which agglutinates red blood cells. It is used as a heparin antagonist. Hexadimethrine,1,5-Dimethyl-1,5-Diazaundecamethylene Polymethobromide,Polybrene,Bromide, Hexadimethrine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human

Related Publications

U O'Doherty, and W J Swiggard, and M H Malim
June 2005, Current HIV/AIDS reports,
U O'Doherty, and W J Swiggard, and M H Malim
July 1998, The New England journal of medicine,
U O'Doherty, and W J Swiggard, and M H Malim
May 2005, Journal of virology,
U O'Doherty, and W J Swiggard, and M H Malim
March 2000, AIDS research and human retroviruses,
U O'Doherty, and W J Swiggard, and M H Malim
January 1995, Annales de dermatologie et de venereologie,
U O'Doherty, and W J Swiggard, and M H Malim
August 2001, Journal of virology,
U O'Doherty, and W J Swiggard, and M H Malim
November 2017, Biochemical and biophysical research communications,
U O'Doherty, and W J Swiggard, and M H Malim
October 2022, Infectious diseases & immunity,
U O'Doherty, and W J Swiggard, and M H Malim
March 2008, AIDS (London, England),
U O'Doherty, and W J Swiggard, and M H Malim
November 1988, Presse medicale (Paris, France : 1983),
Copied contents to your clipboard!