Arachidonic acid causes cytochrome c release from heart mitochondria. 2000

M Di Paola, and T Cocco, and M Lorusso
Department of Medical Biochemistry and Biology, University of Bari, Bari, Italy.

Arachidonic acid interaction with heart mitochondria is known to cause uncoupling as well as inhibition of pyruvate + malate and succinate-supported respiration. Here we present experiments showing that arachidonic acid causes cytochrome c release from Ca(2+)-loaded heart mitochondria. We have also measured mitochondrial matrix swelling and found a fairly good correlation between the two processes, as revealed by the same arachidonic acid concentration dependence and by the same susceptibility toward different free fatty acid species. The effects produced by arachidonic acid are not related to its protonophoric activity since, under the experimental conditions used, saturating concentrations of FCCP did not cause any effect.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008933 Mitochondrial Swelling An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Di Paola, and T Cocco, and M Lorusso
September 1998, Biochemical and biophysical research communications,
M Di Paola, and T Cocco, and M Lorusso
May 2000, The Biochemical journal,
M Di Paola, and T Cocco, and M Lorusso
April 2002, Biochemical and biophysical research communications,
M Di Paola, and T Cocco, and M Lorusso
June 2002, FEBS letters,
M Di Paola, and T Cocco, and M Lorusso
September 2006, Cell death and differentiation,
M Di Paola, and T Cocco, and M Lorusso
January 1999, Biochemical Society symposium,
M Di Paola, and T Cocco, and M Lorusso
March 2000, Nature cell biology,
M Di Paola, and T Cocco, and M Lorusso
September 2009, Free radical biology & medicine,
M Di Paola, and T Cocco, and M Lorusso
January 2002, Sub-cellular biochemistry,
M Di Paola, and T Cocco, and M Lorusso
September 2005, Journal of biochemistry and molecular biology,
Copied contents to your clipboard!