Accuracy in the determination of isoelectric points of some proteins and a peptide by capillary isoelectric focusing: utility of synthetic peptides as isoelectric point markers. 2000

K Shimura, and W Zhi, and H Matsumoto, and K Kasai
Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan. shimurak@pharm.teikyo-u.ac.jp

To evaluate the accuracy ofisoelectric point determination by capillary isoelectric focusing, the pI values of nine proteins and a peptide, the pI values of which had been determined by other methods and ranging pI 3.55-9.60, were determined by capillary isoelectric focusing by cofocusing of recently developed peptide pI markers ranging 3.38-10.17, and the consistency of the pI values was examined. Isoelectric focusing was carried out in neutral polymer-coated capillaries, and the pH gradient was mobilized by pressure toward the cathode, to detect samples with absorption at 280 nm at a fixed detection point. Carrier ampholytes from two different suppliers and in different pH ranges were used. The sharp peaks of the highly pure peptide pI markers greatly facilitated the unambiguous identification of the peaks. When a carrier ampholyte ranging over the acidic side was used, the detection of acidic pI samples was anomalously delayed. This could be partly mitigated by reducing the viscosity of the anode solution in comparison with the pH gradient formed in the capillary. Since the detection times vs the pH relationships were not linear in most cases, the use of a linear calibration line over an entire pH gradient would be erroneous. Instead, the pI values of samples were calculated by assuming a linear relation for pH against detection time between two flanking marker peptides. Close agreement between the pI values, determined by capillary isoelectric focusing, and the reference values of the samples was observed within an average difference range of 0.04-0.08 pH unit with a sample consumption of 10-100 ng within 30-60 min. Some carrier ampholytes were preferentially more effective at either the acidic or the basic side of the pH gradient. For confirmation of the completion of focusing, the use of two different focusing times is recommended.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D019075 Electrophoresis, Capillary A highly-sensitive (in the picomolar range, which is 10,000-fold more sensitive than conventional electrophoresis) and efficient technique that allows separation of PROTEINS; NUCLEIC ACIDS; and CARBOHYDRATES. (Segen, Dictionary of Modern Medicine, 1992) Capillary Zone Electrophoresis,Capillary Electrophoreses,Capillary Electrophoresis,Capillary Zone Electrophoreses,Electrophoreses, Capillary,Electrophoreses, Capillary Zone,Electrophoresis, Capillary Zone,Zone Electrophoreses, Capillary,Zone Electrophoresis, Capillary

Related Publications

K Shimura, and W Zhi, and H Matsumoto, and K Kasai
May 2004, Journal of chromatography. A,
K Shimura, and W Zhi, and H Matsumoto, and K Kasai
January 2004, Journal of proteome research,
K Shimura, and W Zhi, and H Matsumoto, and K Kasai
March 2002, Analytical chemistry,
K Shimura, and W Zhi, and H Matsumoto, and K Kasai
October 1971, Analytical biochemistry,
K Shimura, and W Zhi, and H Matsumoto, and K Kasai
June 2013, Analytical chemistry,
K Shimura, and W Zhi, and H Matsumoto, and K Kasai
July 1996, Electrophoresis,
Copied contents to your clipboard!