Brain lipoprotein metabolism and its relation to neurodegenerative disease. 1999

M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
Douglas Hospital Research Centre,Verdun, Québec, Canada.

Lipoproteins are macromolecular complexes composed of lipids and proteins. The role of these complexes is to provide cells of the organism with lipids to be used as a source of energy, building blocks for biomembrane synthesis, and lipophilic molecules (e.g., steroid hormones and vitamin E) for other physiological purposes, such as cell signaling and antioxidative mechanisms. Lipoproteins also promote the cellular efflux of cholesterol for its disposal into bile. Thus, lipoproteins play an important role in the maintenance of lipid homeostasis throughout the organism. Accordingly, lipoprotein particles have been found circulating in blood, lymph, and interstitial fluid. Despite the existence of the blood-brain barrier, lipoprotein particles have been shown to be also present in the cerebrospinal fluid (CSF). Although a portion of their protein components may filter through the barrier from the vascular compartment, experimental evidence indicates that these particles originate from the nervous tissue. The other protein components include apolipoproteins E, J, and D, and these have been shown to be synthesized by cells within the central nervous system (CNS). Furthermore, it was shown that lipoprotein particles can be isolated from the conditioned medium of astrocytic cultures. The differences in size, structure, and composition of in vitro assembled particles compared with those isolated from the CSF suggest that the particles are modified following their secretion in vivo. This is supported by observations that lipoprotein-modifying enzymes and transfer proteins are also present within CNS tissue and CSF. The fate of CSF lipoproteins is unclear but is probably related to the turnover and clearance of lipids from the CNS or, alternatively, the particles may be recaptured and recycled back into the CNS tissue. The presence of several cell surface receptors for apoE-containing lipoproteins on ependymal cells, as well as on neurons and glial cells, supports this notion and suggests that the isolated brain possesses its own system to maintain local lipid homeostasis. This is further exemplified by the salvage and recycling of lipids shown to occur following a lesion in order to allow surviving neurons to sprout and reestablish lost synapses. Not much is currently known about lipoprotein metabolism in neurodegenerative diseases, but lipid alterations have been repeatedly reported in Alzheimer brains in which neuronal loss and deafferentation are major features. Although the mechanism underlying the link between the epsilon4 allele of the apolipoprotein E gene and Alzheimer's disease is presently unclear, it may well be postulated that it is related to disturbances in brain lipoprotein metabolism.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
June 1982, Biochemical Society transactions,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
January 1966, Progress in brain research,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
January 2009, Casopis lekaru ceskych,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
March 1986, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
January 2016, Acta naturae,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
January 2010, BioFactors (Oxford, England),
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
January 1987, Neurotoxicology,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
November 1983, Seminars in liver disease,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
April 2005, Annals of neurology,
M Danik, and D Champagne, and C Petit-Turcotte, and U Beffert, and J Poirier
January 1994, The Medical clinics of North America,
Copied contents to your clipboard!