Effect of HCO(3)(-) on TPA- and IBMX-induced anion conductances in Necturus gallbladder epithelial cells. 2000

P Lyall, and W M Armstrong, and V Lyall
Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis, Indiana 46202-5102, USA.

Effects of HCO(3)(-) on protein kinase C (PKC)- and protein kinase A (PKA)-induced anion conductances were investigated in Necturus gallbladder epithelial cells. In HCO(3)(-)-free media, activation of PKC via 12-O-tetradecanoylphorbol 13-acetate (TPA) depolarized apical membrane potential (V(a)) and decreased fractional apical voltage ratio (F(R)). These effects were blocked by mucosal 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), a Cl(-) channel blocker. In HCO(3)(-) media, TPA induced significantly greater changes in V(a) and F(R). These effects were blocked only when NPPB was present in both mucosal and basolateral compartments. The data suggest that TPA activates NPPB-sensitive apical Cl(-) conductance (g(Cl)(a)) in the absence of HCO(3)(-); in its presence, TPA stimulated both NPPB-sensitive g(Cl)(a) and basolateral Cl(-) conductance (g(Cl)(b)). Activation of PKA via 3-isobutyl-1-methylxanthine (IBMX) also decreased V(a) and F(R); however, these changes were not affected by external HCO(3)(-). We conclude that HCO(3)(-) modulates the effects of PKC on g(Cl)(b). In HCO(3)(-) medium, TPA and IBMX also induced an initial transient hyperpolarization and increase in intracellular pH. Because these changes were independent of mucosal Na(+) and Cl(-), it is suggested that TPA and IBMX induce a transient increase in apical HCO(3)(-) conductance.

UI MeSH Term Description Entries
D009338 Necturus maculosus A neotenic aquatic species of mudpuppy (Necturus) occurring from Manitoba to Louisiana and Texas.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D015056 1-Methyl-3-isobutylxanthine A potent cyclic nucleotide phosphodiesterase inhibitor; due to this action, the compound increases cyclic AMP and cyclic GMP in tissue and thereby activates CYCLIC NUCLEOTIDE-REGULATED PROTEIN KINASES 3-Isobutyl-1-methylxanthine,Isobutyltheophylline,IBMX,1 Methyl 3 isobutylxanthine,3 Isobutyl 1 methylxanthine
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

P Lyall, and W M Armstrong, and V Lyall
September 2000, Biochemical and biophysical research communications,
P Lyall, and W M Armstrong, and V Lyall
September 1982, The American journal of physiology,
P Lyall, and W M Armstrong, and V Lyall
January 1985, The Journal of membrane biology,
P Lyall, and W M Armstrong, and V Lyall
September 1982, The American journal of physiology,
P Lyall, and W M Armstrong, and V Lyall
May 1988, The Journal of membrane biology,
P Lyall, and W M Armstrong, and V Lyall
January 1984, The Journal of membrane biology,
P Lyall, and W M Armstrong, and V Lyall
August 1994, The Journal of physiology,
P Lyall, and W M Armstrong, and V Lyall
May 1977, The Journal of membrane biology,
P Lyall, and W M Armstrong, and V Lyall
November 2001, Bioelectrochemistry (Amsterdam, Netherlands),
P Lyall, and W M Armstrong, and V Lyall
May 1988, The American journal of physiology,
Copied contents to your clipboard!