Inward current responses to urinary substances in rat vomeronasal sensory neurons. 2000

K Inamura, and M Kashiwayanagi
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.

No study has yet demonstrated an inward current in response to pheromonal substances in vomeronasal sensory neurons. Using female rat vomeronasal sensory neurons, we here successfully recorded inward currents in response to urine from various sources. Of the neurons that responded to urine, 77% responded to only one type of urine. Male Wistar urine induced responses preferentially in the apical layer of the sensory epithelium, whilst male Donryu and female Wistar urine induced responses mainly in the basal layer of the epithelium. The amplitude of inward currents induced by application of male Wistar urine was voltage-dependent with average amplitude of -47.1+/-6.2 pA at -74 mV. The average reversal potential for male Wistar urine was -9.3 +/-6.1 mV, which was not apparently different from the reversal potentials for urine from different species. It is likely that the urine-induced inward currents in response to different types of urine are mediated via a similar channel. The simultaneous removal of Na+ and Ca2+ from extracellular solution eliminated the response. The magnitude of the urine-induced inward current in Cl--free external solution was similar to that in normal solution, suggesting that the urine-induced current is cation selective. Removal of external Ca2+ enhanced the amplitude of the urine-induced current and prolonged the response. Application of the constant-field equation indicated a very high permeability coefficient for Ca2+. This study first demonstrated that substances contained in urine elicited inward currents, which induce an excitatory response in vomeronasal sensory neurons, through cation-selective channels.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010675 Pheromones Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact. Allelochemical,Allelochemicals,Allomone,Allomones,Ectohormones,Kairomone,Kairomones,Pheromone,Semiochemical,Semiochemicals,Synomones
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

K Inamura, and M Kashiwayanagi
November 2012, Chemical senses,
K Inamura, and M Kashiwayanagi
January 1991, Doklady Akademii nauk SSSR,
K Inamura, and M Kashiwayanagi
June 2014, Neuroscience,
K Inamura, and M Kashiwayanagi
July 1990, Neuroscience letters,
K Inamura, and M Kashiwayanagi
January 2018, eNeuro,
K Inamura, and M Kashiwayanagi
January 2010, The Journal of general physiology,
K Inamura, and M Kashiwayanagi
March 1996, Brain research,
K Inamura, and M Kashiwayanagi
January 2017, Chemical senses,
K Inamura, and M Kashiwayanagi
September 2000, Science (New York, N.Y.),
K Inamura, and M Kashiwayanagi
April 1993, Neuroscience letters,
Copied contents to your clipboard!