Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. 2000

S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
Department of Pharmacology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan. shogo@med.kobe-u.ac.jp

The present study was conducted to clarify the role of nicotinic ACh receptors (nAChRs) on long-term potentiation (LTP) in vivo in the intact mouse dentate gyrus using extracellular recording techniques. Intraperitoneal application of nicotine at a dose of 3.0 mg/kg but not 0.03 or 0.3 mg/kg produced a gradually developing, long-lasting increase for 120 min similar to tetanic LTP. Nicotine at a dose of 9. 0 mg/kg caused a temporary increase followed by depression. The long-lasting potentiation induced by nicotine at 3.0 mg/kg, which was named nicotinic long-term potentiation (LTPn), and tetanic LTP were significantly suppressed by pretreatment with mecamylamine (0.5 mg/kg i.p.), a nonselective nicotinic antagonist, but not affected by postapplication of mecamylamine. Interestingly, choline, a selective alpha7 nAChR agonist, at 3.0-90 mg/kg, induced the long-lasting potentiation similar to LTPn in a dose-dependent manner in vivo in the intact mouse dentate gyrus. The long-lasting potentiation induced by choline (30 mg/kg i.p.) was additionally increased by postapplication of nicotine (3.0 mg/kg i.p.) or tetanic stimulation. The present study revealed that systemic application of nicotine or choline induced the long-lasting potentiation in vivo in the intact mouse dentate gyrus, suggesting that alpha7 nAChRs may contribute to the induction of LTP by nicotine, and supporting in vivo animal studies that nicotine improves learning and memory performance.

UI MeSH Term Description Entries
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
October 2006, Neuroscience letters,
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
December 2016, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
January 1998, Advances in pharmacology (San Diego, Calif.),
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
January 2016, Cerebral cortex (New York, N.Y. : 1991),
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
January 1992, Epilepsy research. Supplement,
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
December 2002, Journal of neurophysiology,
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
March 2004, Neuroreport,
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
March 1993, Brain research,
S Matsuyama, and A Matsumoto, and T Enomoto, and T Nishizaki
April 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!