Superimposed promoter sequences of the adenoviral E2 early RNA polymerase III and RNA polymerase II transcription units. 2001

D Ellsworth, and R L Finnen, and S J Flint
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.

The human adenovirus type 2 E2 early (E2E) transcriptional control region contains an efficient RNA polymerase III promoter, in addition to the well characterized promoter for RNA polymerase II. To determine whether this promoter includes intragenic sequences, we examined the effects of precise substitutions introduced between positions +2 and +62 on E2E transcription in an RNA polymerase III-specific, in vitro system. Two noncontiguous sequences within this region were necessary for efficient or accurate transcription by this enzyme. The sequence and properties of the functional element proximal to the sites of initiation identified it as an A box. Although a B box sequence could not be unambiguously located, substitutions between positions +42 and +62 that severely impaired transcription also inhibited binding of the human general initiation protein TFIIIC. Thus, this region of the RNA polymerase III E2E promoter contains a B box sequence. We also identified previously unrecognized intragenic sequences of the E2E RNA polymerase II promoter. In conjunction with our previous observations, these data establish that RNA polymerase II and RNA polymerase III promoter sequences are superimposed from approximately positions -30 to +20 of the complex E2E transcriptional control region. The alterations in transcription induced by certain mutations suggest that components of the RNA polymerase II and RNA polymerase III transcriptional machines compete for access to overlapping binding sites in the E2E template.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D005807 Genes, Overlapping Genes whose nucleotide sequences overlap to some degree. The overlapped sequences may involve structural or regulatory genes of eukaryotic or prokaryotic cells. Overlapping Genes,Gene, Overlapping,Overlapping Gene
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II

Related Publications

D Ellsworth, and R L Finnen, and S J Flint
February 1994, Proceedings of the National Academy of Sciences of the United States of America,
D Ellsworth, and R L Finnen, and S J Flint
February 1988, Nucleic acids research,
D Ellsworth, and R L Finnen, and S J Flint
May 2011, Proceedings of the National Academy of Sciences of the United States of America,
D Ellsworth, and R L Finnen, and S J Flint
January 2006, Biochemical Society symposium,
D Ellsworth, and R L Finnen, and S J Flint
January 2008, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
D Ellsworth, and R L Finnen, and S J Flint
March 1991, Molecular and cellular biology,
D Ellsworth, and R L Finnen, and S J Flint
December 1987, Cell,
D Ellsworth, and R L Finnen, and S J Flint
September 1995, Biochemical and biophysical research communications,
Copied contents to your clipboard!