Substance P and its receptor neurokinin 1 expression in asthmatic airways. 2000

H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, CO 80206, USA.

BACKGROUND Neural mechanisms have been suggested to contribute to the pathogenesis of chronic asthma. The expression of neuropeptides such as substance P may be regulated by infectious pathogens, including Mycoplasma species. In contrast to substance P, the substance P receptor neurokinin 1 has not been examined at the protein level in asthmatic airways. OBJECTIVE This study evaluated substance P and neurokinin 1 protein expression and mucus content in endobronchial biopsy specimens from normal control subjects and asthmatic subjects. Detection of Mycoplasma pneumoniae was performed in both biopsy and bronchoalveolar lavage specimens. METHODS Biopsy specimens were collected from 10 normal control subjects and 18 asthmatic subjects before and after a 6-week treatment with a macrolide antibiotic (n = 11) or placebo (n = 7) and were stained for substance P, neurokinin 1, and mucus. M pneumoniae was evaluated by PCR. RESULTS At baseline, compared with normal control subjects, asthmatic subjects demonstrated increased expression of substance P and neurokinin 1 and mucus content in the airway epithelium. Epithelial mucus content correlated with epithelial substance P expression (r (s) = 0.45, P =.04) and FEV(1) percent predicted (r (s) = -0.51, P =.019). After antibiotic treatment, both epithelial substance P and neurokinin 1 expression were significantly reduced in asthmatic subjects. M pneumoniae was found in 8 of 18 asthmatic subjects. Asthmatic subjects with M pneumoniae, compared with those without M pneumoniae, showed higher baseline epithelial neurokinin 1 expression, which was significantly reduced after antibiotic treatment (P =.02). CONCLUSIONS Our data suggest that abnormalities in neural mechanisms may exist in the epithelium of asthmatic airways, and M pneumoniae is possibly involved in this process. Antibiotic intervention may be effective in the treatment of asthma partly through the downregulation of the neurogenic process.

UI MeSH Term Description Entries
D008297 Male Males
D009093 Mucus The viscous secretion of mucous membranes. It contains mucin, white blood cells, water, inorganic salts, and exfoliated cells.
D009177 Mycoplasma pneumoniae Short filamentous organism of the genus Mycoplasma, which binds firmly to the cells of the respiratory epithelium. It is one of the etiologic agents of non-viral primary atypical pneumonia in man. Eaton Agent
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D005541 Forced Expiratory Volume Measure of the maximum amount of air that can be expelled in a given number of seconds during a FORCED VITAL CAPACITY determination . It is usually given as FEV followed by a subscript indicating the number of seconds over which the measurement is made, although it is sometimes given as a percentage of forced vital capacity. Forced Vital Capacity, Timed,Timed Vital Capacity,Vital Capacity, Timed,FEVt,Capacities, Timed Vital,Capacity, Timed Vital,Expiratory Volume, Forced,Expiratory Volumes, Forced,Forced Expiratory Volumes,Timed Vital Capacities,Vital Capacities, Timed,Volume, Forced Expiratory,Volumes, Forced Expiratory
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
October 1987, Thorax,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
December 2004, Journal of neuroimmunology,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
July 2012, Journal of cellular and molecular medicine,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
November 2000, The American journal of pathology,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
February 2000, American journal of physiology. Lung cellular and molecular physiology,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
January 2017, International review of neurobiology,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
October 2017, Research in veterinary science,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
January 2016, OncoTargets and therapy,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
May 1996, Brain research,
H W Chu, and M Kraft, and J E Krause, and M D Rex, and R J Martin
November 2023, Cell & bioscience,
Copied contents to your clipboard!