Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese flounder Paralychthys olivaceus. 2000

I Hirono, and B H Nam, and T Kurobe, and T Aoki
Laboratory of Genetics and Biochemistry, Department of Aquatic Biosciences, Tokyo University of Fisheries, Tokyo, Japan.

We cloned a cDNA and the gene for Japanese flounder TNF. The TNF cDNA consisted of 1217 bp, which encoded 225 amino acid residues. The identities between Japanese flounder TNF and members of the mammalian TNF family were approximately 20-30%. The positions of cysteine residues that are important for disulfide bonds were conserved with respect to those in mammalian TNF-alpha. The Japanese flounder TNF gene has a length of approximately 2 kbp and consists of four exons and three introns. The positions of the exon-intron junction positions of Japanese flounder TNF gene are similar to those of human TNF-alpha. However, the length of the first intron of Japanese flounder is much shorter than that of the human TNF-alpha gene. There are simple CA or AT dinucleotide repeats in the 5'-upstream and 3'-downstream regions of the Japanese flounder TNF gene. Southern blot hybridization indicted that Japanese flounder TNF exists as a single copy. Expression of Japanese flounder TNF mRNA is greatly induced after stimulation of PBLs with LPS, Con A, or PMA. These results indicated that Japanese flounder TNF is more like mammalian TNF-alpha than mammalian lymphotoxin-alpha, with respect to its gene structure, length of amino acid sequence, number and position of cysteine residues, and regulation of gene expression.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008233 Lymphotoxin-alpha A tumor necrosis factor family member that is released by activated LYMPHOCYTES. Soluble lymphotoxin is specific for TUMOR NECROSIS FACTOR RECEPTOR TYPE I; TUMOR NECROSIS FACTOR RECEPTOR TYPE II; and TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 14. Lymphotoxin-alpha can form a membrane-bound heterodimer with LYMPHOTOXIN-BETA that has specificity for the LYMPHOTOXIN BETA RECEPTOR. TNF Superfamily, Member 1,TNF-beta,Tumor Necrosis Factor Ligand Superfamily Member 1,Tumor Necrosis Factor-beta,Lymphotoxin,Lymphotoxin-alpha3,Soluble Lymphotoxin-alpha,alpha-Lymphotoxin,Lymphotoxin alpha,Lymphotoxin alpha3,Lymphotoxin-alpha, Soluble,Soluble Lymphotoxin alpha,Tumor Necrosis Factor beta,alpha Lymphotoxin
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005432 Flounder Common name for two families of FLATFISHES belonging to the order Pleuronectiformes: left-eye flounders (Bothidae) and right-eye flounders (Pleuronectidae). The latter is more commonly used in research. Plaice,Platichthys,Pleuronectes,Pseudopleuronectes,Halibut,Pleuronectes platessa,Flounders
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

I Hirono, and B H Nam, and T Kurobe, and T Aoki
October 2007, Fish & shellfish immunology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
December 2007, Fish & shellfish immunology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
December 1997, Molecular marine biology and biotechnology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
September 2010, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
January 2007, Developmental and comparative immunology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
June 2000, Developmental and comparative immunology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
June 2017, Fish & shellfish immunology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
December 2007, Fish & shellfish immunology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
February 2014, Veterinary immunology and immunopathology,
I Hirono, and B H Nam, and T Kurobe, and T Aoki
January 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Copied contents to your clipboard!