Chloramphenicol binding site with analogues of chloramphenicol and puromycin. 1975

R Vince, and R G Almquist, and C L Ritter, and S Daluge

The effect of a series of puromycin analogues and aminoacyl chloramphenicol derivatives on poly(U,C)-directed polyphenylalanine synthesis in an Escherichia coli cell-free system was examined. A comparison between the structures and activities of the puromycin and chloramphenicol analogues was made to examine the proposal that ribosomal binding sites for both antibiotics overlap. Our results suggest that the dichloroacetamido group in the chloramphenicol molecule does not correspond to the role of the aminoacyl moieties of either puromycin or aminoacyl transfer ribonucleic acid. These results comparing the structures and activities of puromycin and chloramphenicol analogues also seem inconsistent with a common binding site for the p-substituted phenyl moieties of the two antibiotics. Previous data have indicated that both sites are mutually affected by the prior binding of either antibiotic. Although it is possible that chloramphenicol and puromycin may have overlapping bindings sites, no common structural features between the two antibiotics are supported by our data.

UI MeSH Term Description Entries
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R Vince, and R G Almquist, and C L Ritter, and S Daluge
December 1978, Biochemistry,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
June 1973, Molecular biology reports,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
May 1974, Biochimica et biophysica acta,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
March 1981, Journal of medicinal chemistry,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
December 1972, FEBS letters,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
September 1970, Biochemical and biophysical research communications,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
December 1968, European journal of biochemistry,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
April 1980, Archives of biochemistry and biophysics,
R Vince, and R G Almquist, and C L Ritter, and S Daluge
February 1994, Biochemistry,
Copied contents to your clipboard!