Cyclin-dependent kinase and protein kinase C inhibitors: a novel class of antineoplastic agents in clinical development. 2000

A Kaubisch, and G K Schwartz
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

Malignant cells have acquired adaptations, which give them a growth and survival advantage over normal cells. One effect of many of these adaptations is that many cancerous cells are less likely to undergo programmed cell death (apoptosis) and, moreover, are resistant to chemotherapy-induced apoptosis. Other features of neoplastic cells are the loss of regulated or orderly progression through the cell cycle. In normal and cancerous cells, a balance between proapoptotic and antiapoptotic signals exists. Protein kinase C (PKC) is a cellular serine/threonine kinase with a central role in the mediation of mitogenic signals as well as the regulation of antiapoptotic signals. Inhibition of PKC by a novel group of chemical agents (PKC inhibitors) can induce apoptosis in some malignant cell lines, act as differentiating agents, and enhance the effect of cytotoxic chemotherapy. Other kinase inhibitors are potent inhibitors of kinases involved in the control of cell cycle progression (cyclin-dependent kinases [cdks]). Cdk inhibitors are able to induce cell cycle arrest in neoplastic cells and also act as enhancers of chemotherapy-induced apoptosis. The catalytic domain of different classes of kinases (PKC and cdk) share considerable homology. As a result, many kinase inhibitors that act by blocking the catalytic site are not highly specific and may act as inhibitors of both PKC and cdks. Preclinical studies point to potential applications for some of these PKC/cdk inhibitors, and current clinical trials are exploring the role these agents might have in cancer therapy. In this article, we discuss the rationale for the development of this novel class of agents and highlight those drugs, which have shown promise in clinical testing.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002986 Clinical Trials as Topic Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries. Clinical Trial as Topic
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A Kaubisch, and G K Schwartz
August 2000, Expert opinion on investigational drugs,
A Kaubisch, and G K Schwartz
August 2001, Human pathology,
A Kaubisch, and G K Schwartz
January 2017, Anti-cancer agents in medicinal chemistry,
A Kaubisch, and G K Schwartz
April 2005, The Journal of biological chemistry,
A Kaubisch, and G K Schwartz
October 2008, Bioorganic & medicinal chemistry letters,
A Kaubisch, and G K Schwartz
May 2002, The Annals of pharmacotherapy,
A Kaubisch, and G K Schwartz
December 2009, Future medicinal chemistry,
A Kaubisch, and G K Schwartz
December 2009, Investigational new drugs,
Copied contents to your clipboard!