In vitro investigation of the effect of prostaglandins and nonsteroidal anti-inflammatory drugs on contractile activity of the equine smooth muscle of the dorsal colon, ventral colon, and pelvic flexure. 2000

L M Van Hoogmoed, and J R Snyder, and F Harmon
Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California, Davis 95616, USA.

OBJECTIVE To determine the in vitro effect of prostaglandin E2 (PGE2), PGF2alpha, PGI2; and nonsteroidal anti-inflammatory drugs (NSAID; ie, flunixin meglumine, ketoprofen, carprofen, and phenylbutazone) on contractile activity of the equine dorsal colon, ventral colon, and pelvic flexure circular and longitudinal smooth muscle. METHODS 26 healthy horses. METHODS Tissue collected from the ventral colon, dorsal colon, and pelvic flexure was cut into strips and mounted in a tissue bath system where contractile strength was determined. Incremental doses of PGE2, PGF2alpha,, PGI2, flunixin meglumine, carprofen, ketoprofen, and phenylbutazone were added to the baths, and the contractile activity was recorded for each location and orientation of smooth muscle. RESULTS In substance P-stimulated tissues, PGE2 and PGF2alpha enhanced contractility in the longitudinal smooth muscle with a decrease or no effect on circular smooth muscle activity. Prostaglandin I2 inhibited the circular smooth muscle response with no effect on the longitudinal muscle. The activity of NSAID was predominantly inhibitory regardless of location or muscle orientation. CONCLUSIONS In the equine large intestine, exogenous prostaglandins had a variable effect on contractile activity, depending on the location in the colon and orientation of the smooth muscle. The administration of NSAID inhibited contractility, with flunixin meglumine generally inducing the most profound inhibition relative to the other NSAID evaluated in substance P-stimulated smooth muscle of the large intestine. The results of this study indicate that prolonged use of NSAID may potentially predispose horses to develop gastrointestinal tract stasis and subsequent impaction.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010388 Pelvis The space or compartment surrounded by the pelvic girdle (bony pelvis). It is subdivided into the greater pelvis and LESSER PELVIS. The pelvic girdle is formed by the PELVIC BONES and SACRUM. Pelvic Region,Region, Pelvic
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

L M Van Hoogmoed, and J R Snyder, and F Harmon
July 1998, The American journal of medicine,
L M Van Hoogmoed, and J R Snyder, and F Harmon
August 2011, Equine veterinary journal. Supplement,
L M Van Hoogmoed, and J R Snyder, and F Harmon
August 2011, Equine veterinary journal. Supplement,
L M Van Hoogmoed, and J R Snyder, and F Harmon
June 2009, European journal of pharmacology,
L M Van Hoogmoed, and J R Snyder, and F Harmon
January 1986, The American journal of medicine,
L M Van Hoogmoed, and J R Snyder, and F Harmon
June 1985, The American journal of medicine,
L M Van Hoogmoed, and J R Snyder, and F Harmon
September 1999, Biochemical pharmacology,
L M Van Hoogmoed, and J R Snyder, and F Harmon
August 1986, The American journal of medicine,
L M Van Hoogmoed, and J R Snyder, and F Harmon
November 1967, British journal of pharmacology and chemotherapy,
L M Van Hoogmoed, and J R Snyder, and F Harmon
October 2008, Current gastroenterology reports,
Copied contents to your clipboard!