Cytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice. 2000

H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
Max Delbrück Center for Molecular Medicine and Franz Volhard Clinic, Medical Faculty of the Charité, Humboldt University of Berlin, Berlin, Germany.

Cytochrome P450 (P450)-dependent arachidonic acid metabolites may act as mediators in the regulation of vascular tone and renal function. We studied arachidonic acid hydroxylase activities in renal microsomes from normotensive NMRI mice, desoxycorticosterone acetate (DOCA)-salt hypertensive mice, and DOCA-salt mice treated with either lovastatin or bezafibrate, both of which improve hemodynamics in this model. Control renal microsomes had arachidonic acid hydroxylase activities of 175+/-12 pmol. min(-1). mg(-1). The metabolites formed were 20- and 19-hydroxyarachidonic acid, representing approximately 80% and approximately 20% of the total hydroxylation. Treatment with DOCA-salt resulted in significantly decreased hydroxylase activities (to 84+/-4 pmol. min(-1). mg(-1)) of the total microsomal P450 content and a decrease in immunodetectable Cyp4a proteins. Lovastatin had no effect on these variables, whereas bezafibrate increased arachidonic acid hydroxylase activities to 163+/-12 pmol. min(-1). mg(-1). In situ hybridization with probes for Cyp4a-10, 12, and 14 revealed that Cyp4a-14 was the P450 isoform most strongly induced by bezafibrate. The expression was concentrated in the cortical medullary junction and was localized predominantly in the proximal tubules. In conclusion, these results suggest that the capacity to produce 20-hydroxyarachidonic acid is impaired in the kidneys of DOCA-salt hypertensive mice. Furthermore, bezafibrate may ameliorate hemodynamics in this model by restoring P450-dependent arachidonic acid hydroxylase activities. Lovastatin, on the other hand, exerts its effects via P450-independent mechanisms.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008148 Lovastatin A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver. Lovastatin, 1 alpha-Isomer,Mevinolin,6-Methylcompactin,Lovastatin, (1 alpha(S*))-Isomer,MK-803,Mevacor,Monacolin K,1 alpha-Isomer Lovastatin,6 Methylcompactin,Lovastatin, 1 alpha Isomer,MK 803,MK803,alpha-Isomer Lovastatin, 1
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009392 Nephrectomy Excision of kidney. Heminephrectomy,Heminephrectomies,Nephrectomies
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
July 1999, Biochemistry. Biokhimiia,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
January 1987, Agents and actions. Supplements,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
January 1989, Advances in experimental medicine and biology,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
January 1990, Kidney international,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
February 1988, Biochemical pharmacology,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
January 1993, Journal of lipid mediators,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
October 1985, Biochemical and biophysical research communications,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
January 1992, The Tohoku journal of experimental medicine,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
June 2002, Current opinion in lipidology,
H Honeck, and V Gross, and B Erdmann, and E Kärgel, and R Neunaber, and A F Milia, and W Schneider, and F C Luft, and W H Schunck
January 2000, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!