Sequential changes of cholinergic and dopaminergic receptors in brains after 6-hydroxydopamine lesions of the medial forebrain bundle in rats. 2000

T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.

We studied sequential changes in muscarinic cholinergic receptors, high-affinity choline uptake sites and dopamine D2 receptors in the brain after 6-hydroxydopamine lesions of the medial forebrain bundle in rats. The animals were unilaterally lesioned in the medial forebrain bundle and the brains were analyzed at 1, 2, 4 and 8 weeks postlesion. [3H]Quinuclidinylbenzilate (QNB), [3H]hemicholinum-3 (HC-3) and [3H]raclopride were used to label muscarinic cholinergic receptors, high-affinity choline uptake sites and dopamine D2 receptors, respectively. The degeneration of nigrostriatal pathway produced a transient decrease in [3H]QNB binding in the parietal cortex of both ipsilateral and contralateral sides at 2 and 8 weeks postlesion. [3H]QNB binding also showed a mild but insignificant decrease in the ipsilateral striatum throughout the postlesion periods. No significant change was observed in the substantia nigra (SN) of both ipsilateral and contralateral sides throughout the postlesion periods. In contrast, [3H]HC-3 binding showed no significant change in the parietal cortex of both ipsilateral and contralateral sides during the postlesion. However, [3H]HC-3 binding was upregulated in the ipsilateral dorsolateral striatum throughout the postlesion periods. The ventromedial striatum also showed a significant increase in [3H]HC-3 binding at 1 week and 2 weeks postlesion. On the other hand, no significant change in [3H]raclopride binding was found in the parietal cortex of both ipsilateral and contralateral sides during the postlesion. [3H]Raclopride binding showed a conspicuous increase in the ipsilateral striatum (35-52% of the sham-operated values in the lateral part and 39-54% in the medial part) throughout the postlesion periods. In the contralateral side, a mild increase in [3H]raclopride binding was also found in the striatum (10-15% of the sham-operated values in the lateral part and 22% in the medial part) after lesioning. However, a significant decline in [3H]raclopride binding was observed in the ipsilateral SN and ventral tegmental area during the postlesion. The present study indicates that 6-hydroxydopamine injection of medial forebrain bundle in rats can cause functional changes in high-affinity choline uptake site in the striatum, as compared with muscarinic cholinergic receptors. Furthermore, our studies demonstrate an upregulation in dopamine D2 receptors in the striatum and a decrease in the receptors in the SN and ventral tegmental area after the 6-hydroxydopamine injection. Thus, these findings provide further support for neurodegeneration of the nigrostriatal pathway that occurs in Parkinson's disease.

UI MeSH Term Description Entries
D008297 Male Males
D008474 Medial Forebrain Bundle A complex group of fibers arising from the basal olfactory regions, the periamygdaloid region, and the septal nuclei, and passing to the lateral hypothalamus. Some fibers continue into the tegmentum. Median Forebrain Bundle,Bundle, Medial Forebrain,Bundle, Median Forebrain,Bundles, Medial Forebrain,Bundles, Median Forebrain,Forebrain Bundle, Medial,Forebrain Bundle, Median,Forebrain Bundles, Medial,Forebrain Bundles, Median,Medial Forebrain Bundles,Median Forebrain Bundles
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D006426 Hemicholinium 3 A potent inhibitor of the high affinity uptake system for CHOLINE. It has less effect on the low affinity uptake system. Since choline is one of the components of ACETYLCHOLINE, treatment with hemicholinium can deplete acetylcholine from cholinergic terminals. Hemicholinium 3 is commonly used as a research tool in animal and in vitro experiments. Hemicholinium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
June 2004, Metabolic brain disease,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
June 2002, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
November 1985, Journal of neurochemistry,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
December 1982, Brain research,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
April 2005, Behavioural brain research,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
January 2002, Neurological research,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
January 2013, Neurologia medico-chirurgica,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
July 1972, Journal of neurochemistry,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
February 2024, Scientific reports,
T Araki, and H Tanji, and K Fujihara, and H Kato, and Y Imai, and M Mizugaki, and Y Itoyama
September 1976, Behavioral biology,
Copied contents to your clipboard!