Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. 2000

M Melis, and G L Gessa, and M Diana
Department of Neuroscience B.B. Brodie, University of Cagliari, University of Sassari, Italy.

1. The mechanism underlying morphine and cannabinoid-induced excitation of meso-accumbens and nigro-striatal dopaminergic neurons was investigated by extracellular single unit recording techniques coupled with antidromic activation from the nucleus accumbens and striatum respectively, in unanesthetized rats. 2. The intravenous administration of cumulative doses (1-4 mg/kg) of morphine, dose-dependently increased the firing rate of dopaminergic neurons projecting to the nucleus accumbens and neostriatum, while the same doses inhibited the activity of pars reticulata neurons of the substantia nigra. Both effects were antagonized by naloxone (0.1 mg/kg i.v.) but not by the selective CB1 receptor antagonist SR 141716A (1 mg/kg i.v.). 3. The intravenous administration of cumulative doses (0.125-0.5 mg/kg) of delta9-tetrahydrocannabinol (delta9-THC) also increased the firing rate of meso-accumbens and nigro-striatal dopaminergic neurons; this effect was antagonized by SR 141716A (1 mg/kg i.v.), but not by naloxone. 4. Furthermore, nor delta9-THC up to a dose of 1 mg/kg, maximally effective in stimulating dopamine neurons, neither SR 141716A (1 mg/kg i.v.) at a dose able to reverse the stimulatory effect of delta9, THC on dopamine cells, did alter the activity of SNr neurons. 5. The results indicate that morphine and delta9-THC activate dopaminergic neurons through distinct receptor-mediated mechanisms; morphine may act by removing the inhibitory input from substantia nigra pars reticulata neurons (an effect mediated by mu-opioid receptors). Alternatively, the delta9-THC-induced excitation of dopaminergic neurons seems to be mediated by CB1 cannabinoid receptors, while neither mu-opioid receptors nor substantia nigra pars reticulata neurons are involved.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006213 Hallucinogens Drugs capable of inducing illusions, hallucinations, delusions, paranoid ideations, and other alterations of mood and thinking. Despite the name, the feature that distinguishes these agents from other classes of drugs is their capacity to induce states of altered perception, thought, and feeling that are not experienced otherwise. Hallucinogen,Hallucinogenic Agent,Hallucinogenic Drug,Hallucinogenic Substance,Psychedelic,Psychedelic Agent,Psychedelic Agents,Psychotomimetic Agent,Psychotomimetic Agents,Hallucinogenic Agents,Hallucinogenic Drugs,Hallucinogenic Substances,Psychedelics,Agent, Hallucinogenic,Agent, Psychedelic,Agent, Psychotomimetic,Agents, Hallucinogenic,Agents, Psychedelic,Agents, Psychotomimetic,Drug, Hallucinogenic,Drugs, Hallucinogenic,Substance, Hallucinogenic,Substances, Hallucinogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras

Related Publications

M Melis, and G L Gessa, and M Diana
August 1985, Brain research,
M Melis, and G L Gessa, and M Diana
October 2008, Current vascular pharmacology,
M Melis, and G L Gessa, and M Diana
February 1978, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!