Mouse Tspan-5, a member of the tetraspanin superfamily, is highly expressed in brain cortical structures. 2000

C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
Department of Cell Biology, Faculty of Biology, and Neurosciences Research Center (CERN), University of Barcelona, Spain.

Using a subtractive hybridization method for the identification of genes related to the development of the murine cerebral cortex, we cloned a mouse homologue of a human tetraspanin family member, Tspan-5. We have isolated a 3.1 Kb cDNA fragment containing the entire coding region. Analysis of the cDNA nucleotide sequence revealed that mouse Tspan-5 shares 98% amino acid sequence identity with its human homologue. The predicted length of the mouse protein is 268 amino acids, with four putative hydrophobic domains with N- and C-intracellular tails, and two extracellular domains. Northern blot analysis of adult mouse tissues showed a single transcript, which is preferentially expressed in the brain. In situ hybridization showed prominent expression of Tspan-5 in the neocortex, the hippocampus, amygdala and in Purkinje cells in the cerebellum. The pattern of expression of Tspan-5 in the mouse brain suggests a role for the tetraspanins in the maintenance of adult brain function.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
October 2001, Biochemical and biophysical research communications,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
July 2004, Journal of neuroscience research,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
November 2001, Biochimica et biophysica acta,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
October 2007, Journal of cancer research and clinical oncology,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
March 2009, Cancer letters,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
January 1995, Gene,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
July 2004, Molecular and cellular biology,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
December 2007, Allergology international : official journal of the Japanese Society of Allergology,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
May 2002, Proceedings of the National Academy of Sciences of the United States of America,
C García-Frigola, and F Burgaya, and M Calbet, and L de Lecea, and E Soriano
December 1997, Gene,
Copied contents to your clipboard!