Prolactin stimulates activation of c-jun N-terminal kinase (JNK). 2000

K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
Department of Pathology, University of Colorado Health Sciences Center, Denver 80262, USA.

In recent years the mitogen-activated protein (MAP) kinase family has expanded to include both c-jun N-terminal kinases (JNKs), and the p38/HOG1 family in addition to the extracellular regulated kinase (ERK) family. These kinases are activated by a variety of growth factors, as well as extra- and intracellular insults such as osmotic stress, UV light, and chemotherapeutic agents. Stimulation of the PRL-dependent Nb2 cell line with PRL results in the rapid activation of JNK as determined by the glutathione-S-transferase (GST)-jun kinase assay. Activation was maximal 30 min after stimulation with 50 nM rat PRL (rPRL) and decreased after that time. Dose response studies indicated that concentrations as low as 10 nM rPRL resulted in maximal activation. The interleukin-3 (IL-3)-dependent myeloid progenitor cell line 32Dcl3 was transfected with the long, Nb2, and short forms of the rat PRL receptor (rPRLR), as well as the long form of the human PRLR (hPRLR). The long and Nb2 forms of the PRLR were able to stimulate activation of JNK; however, the short form of the rPRLR was not. This corresponds with the inability of the short form of the rPRLR to stimulate proliferation of 32Dcl3 cells. Activation of JNK in 32Dcl3 cells expressing the long form of the hPRLR was maximal at 30 min after stimulation with 100 nM ovine PRL (oPRL) and declined after that time. Dose response studies indicated that activation of JNK was maximal after 30 min at a concentration of 10 nM, and the amount of activated JNK declined at the highest concentration of oPRL, 100 nM. Immunoblot analysis with an antibody that recognizes the activated (phosphorylated) forms of JNK1 and JNK2 indicated that both JNK1 and JNK2 isoforms were activated in 32D/hPRLR cells stimulated with oPRL. A recombinant human adenovirus expressing a kinase-inactive mutant of JNK1 (APF mutant) was used to determine the biological effect of blocking JNK activity in Nb2 cells. Expression of the JNK1-APF mutant inhibited cellular proliferation and induced DNA fragmentation typical of cells undergoing apoptosis. These data suggest that activation of JNKs may be important in mitogenic signaling and/or suppression of apoptosis in Nb2 cells.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011981 Receptors, Prolactin Labile proteins on or in prolactin-sensitive cells that bind prolactin initiating the cells' physiological response to that hormone. Mammary casein synthesis is one of the responses. The receptors are also found in placenta, liver, testes, kidneys, ovaries, and other organs and bind and respond to certain other hormones and their analogs and antagonists. This receptor is related to the growth hormone receptor. Prolactin Receptors,PRL Receptors,Prolactin Receptor,Receptors, PRL,Receptor, Prolactin
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
July 2008, Mini reviews in medicinal chemistry,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
November 1995, Molecular and cellular biology,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
April 2010, Journal of medicinal chemistry,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
January 2012, PloS one,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
January 2021, Current medicinal chemistry,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
January 2012, PloS one,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
November 1998, Journal of biochemistry,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
July 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
October 2020, Cells,
K L Schwertfeger, and S Hunter, and L E Heasley, and V Levresse, and R P Leon, and J DeGregori, and S M Anderson
March 2010, Biochimica et biophysica acta,
Copied contents to your clipboard!