Effects of DNA topology, temperature and solvent viscosity on DNA retardation in slalom chromatography. 2000

J Hirabayashi, and K I Kasai
Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikvo University, Sagamiko, Kanagawa. Japan. j-hira@pharm.teikyo-u.ac.jp

Slalom chromatography is a unique size-fractionation method applicable to large DNA molecules [>5 kilobase pairs (kbp)]. The method was first developed by using columns packed with microbeads (diameter, <20 microm) used for high-performance liquid chromatography and by applying a relatively fast flow-rate (>0.3 ml/min). Previous studies suggested that the separation is attributed to a hydrodynamic rather than to an equilibrium phenomenon (J. Hirabayashi and K. Kasai, Anal. Biochem. 178 (1989) 336; J. Hirabayashi, N. Itoh, K. Noguchi and K. Kasai, Biochemistry, 29 (1990) 9515). In the present report, the results of a systematic study on the effects of DNA topology, temperature, and solvent viscosity on DNA retardation are described. Firstly, the behaviour of circular (super-coiled) and linearized forms of charomid DNAs (20-42 kbp) was studied. Circular-form DNA molecules were found to be fractionated size-dependently similarly to linear forms in a flow-rate dependent manner. However, the extent of retardation of the circular form DNA was apparently less than that of the corresponding linear forms. Circular DNAs showed almost the same retardation (e.g., 42 kbp) as DNA fragments (e.g., 20 kbp) having approximately half of the size of the former. This observation indicates that DNA retardation is basically related to physical length, not to mass. Secondly, to study the effect of temperature with special reference to solvent viscosity, we carried out chromatographic analysis at various temperatures ranging from 6 to 65 degrees C in both the absence and presence of sucrose (10 or 20%, w/v). The results showed that it is the solvent viscosity that determines the extent of retardation. Taken together, all of physicochemical parameters that define hydrodynamic properties, i.e., particle size, flow-rate and solvent viscosity, proved to be critical in slalom chromatography as well as the potential physical length of the DNA, thus supporting the concept that slalom chromatography is based on a hydrodynamic principle.

UI MeSH Term Description Entries
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities

Related Publications

J Hirabayashi, and K I Kasai
July 2000, Journal of chromatography. A,
J Hirabayashi, and K I Kasai
September 2000, Talanta,
J Hirabayashi, and K I Kasai
February 1986, Biopolymers,
J Hirabayashi, and K I Kasai
May 2019, The journal of physical chemistry. B,
J Hirabayashi, and K I Kasai
January 1967, Biopolymers,
J Hirabayashi, and K I Kasai
April 2010, The Journal of chemical physics,
J Hirabayashi, and K I Kasai
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
J Hirabayashi, and K I Kasai
November 2025, Journal of chromatography. A,
J Hirabayashi, and K I Kasai
March 2002, Analytical chemistry,
Copied contents to your clipboard!